
 

6.830 2010 Lecture 15: C-Store (Sam Madden) 

Why are we reading this paper?
C-store has standard interface, but very different design
Help us understand what choices standard DBs made

Think about different set of apps than OLTP 

Paper status
Most individual techniques already existed
C-Store pulls them together
Not just a limited special-purpose DB
transparent -- sql interface

read/write, not just r/o

consistency

transactional update


Paper doesn't describe complete system

design + partial implementation


Commercialized as Vertica


What's a data warehouse?
 big historical collection of data
companies analyze to spot trends &c
what products are in? what's out? where is cherry coke popular?
spot early, order more


mostly r/o but must be updated, maybe continuously


Example: big chain of stores, e.g. Walmart
each store records every sale
upload to central DB at headquarters
keep the last few years 

Typical schema (logical):
time(tid,year,mon,day,hour) product(pid,type,color,supplier)

 xact(tid,pid,sid,cid,price,discount,tax,coupon,&c)

 store(sid,state,mgr,size) customer(cid,city,zip) 

called a "star schema"
 "fact table" in the middle

 gigantic # of rows

might have 100s of columns


"dimension tables" typically much smaller 

How big is the data?
50K products (5 MB)
3K stores (1 MB)
5M customers (5 GB)
150K times (5 MB) (10 minute granularity)
350B xact rows (35 TB) (100 bytes/sale)
3000 stores * 10 registers * 20 items/min * 2 years 

example 1:
total sales by store in Texas on Mondays
join xact to time and store
filter by day and state
group by sid, aggregate 

example 2:
average daily sales for Nikon cameras
join xact to product, time
filter by supplier
group by day, aggregate 



How long would queries take on traditional DB?
probably have to look at every page of fact table

even if only 1% of records pass filter

means every block might have one relevant record

so index into fact table may not be very useful


joins to dimension tables pretty cheap

they fit in memory, fast hash lookups


how long to read the whole fact table?

35 TB, say 100 disks, 50 MB/sec/disk => 2 hours


outch!


You can imagine building special setups
e.g. maintain aggregates in real time -- pre-compute

know all the queries in advance

update aggregate answers as new data arrives

table of daily sales of Nikon cameras, &c


but then hard to run "ad-hoc" queries


C-Store 

Why columns?
Why store each column separately?
avoid reading bytes from fact table you don't need 

Why "projections" of columns?
you usually want more than one column
e.g. sid and price for example 1 

Why is a projection sorted on one of the columns?
to help aggregation: bring all data for a given store together
or to help filtering by bringing all data w/ given col value together
so you only have to read an interval of the column 

What projection would help example 1?
columns: sid, price, store.state, time.day
note we are including columns from multiple logical tables
note we are duplicating a lot of data e.g. store.state
note projection must have every column you need -- can't consult "original" row
thus you don't need a notion of tupleID


note i'th row in each column comes from same xact row

 order?

 sid

 state, sid


Why multiple overlapping projections?
why store the same column multiple times? 

What projection would help example 2?
columns: price, time.year, time.mon, time.day, product.supplier
note we are not including join columns! e.g. pid

order?

 supplier, year, mon, day

year, mon, day, supplier


What if there isn't an appropriate projection for your query?
You lose -> wait 2 hours
 Ask DB administrator to add a projection 

Could we get the same effect in conventional DB?
Keep heap files sorted ("clustered")?
can only do it one way

B+Trees for order and filtering? 



 have to avoid seeks into main heap file, so multi-key B+trees

copy data into many tables, one per projection

So yes, we could

But very manual

choose right table for each query

updating?


"materialized views" partially automates this for conventional DB

and Eval in Section 9 shows they make row store perform 10x better

but c-store still faster


Won't all this burn up huge quantities of disk space? 

How do they compress? 

Why does self-order vs foreign-order matter in Section 3.1? 

How to compress for our example projections?
sid ordered by sid?
price ordered by sid?
store.state ordered by sid?
time.day ordered by sid? 

Won't it be slow to update if there are lots of copies? 

How does C-Store update efficiently? 

How does C-Store run consistent r/o queries despite updates? 

Why segment across a cluster of servers?
Parallel speedup
many disks, more memory, many CPUs 

How do they ensure good parallel speedup on a cluster?
What is a "horizontal partition"?
Why will that lead to good parallel speedup?
Sorting allows filtering and aggregating to proceed in parallel
will talk about parallel DBs more later 

Evaluation? Section 9
 what are the main claims that need to be substantiated?

 faster on data warehouse queries than a traditional row store

uses a reasonable amount of space


Experimental setup
standard data-warehouse benchmark "TPC-H"
 single machine
one disk
 2 GB RAM
 this is a little odd -- original data also 2 GB
small reduction in memory requirement could give a huge boost in this setup
but make no difference for larger data sets 

TPC-H scale_10
 standard data warehouse benchmark
 comes in different sizes ("scale")

defines how many rows in each table

customer: 1.5 M rows, abt 15 MB

orders: 15 M rows, abt 150 MB

lineitem: 60 M rows, abt 2.4 GB


results are spectacular!
mostly > 100x faster than row store 



Q4 is 400x faster on c-store -- why?
print o_orderdate, l_shipdate
group by o_orderdate
filter on l_orderkey, o_orderkey, o_orderdate
must be using D2: o_orderdate, l_shipdate, l_suppkey | o_orderdate, l_suppkey
D2 is missing o_orderkey and l_orderkey -- do we need them?


D2 already in good order to aggregate by o_orderdate

how much data is c-store scanning?

two columns with 60 M rows

 o_orderdate probably compressed down to a bit or byte

l_shipdate might be 4 bytes

so 300 MB?


 read from disk in 6 seconds
 read from RAM in 0.3 seconds
 actual performance is in between: 2 seconds
maybe skipping due to o_orderdate > D? maybe some in mem, some in disk?

what is row DB probably doing? for 723 seconds

would have to scan 2 GB LINEITEM table

 if doesn't fit in RAM, 40 seconds at 50 MB/sec from disk

must join to ORDERS table, fits in memory, should be fast hash

then sort (or something) by o_orderdate

hard to guess why row DB takes 723 rather than 40+ seconds


Q2 is only 3x faster w/ c-store
needs l_suppkey, l_shipdate
filter by l_shipdate
group by l_suppkey
probably uses D1: l* | l_shipdate, l_suppkey
D1 lets c-store only look at l_shipdate = D, needn't scan most of LINEITEM
D1 sorted well for aggregation
what would row DB do?
 maybe has a b+tree also keyed by l_shipdate, l_suppkey?

does not need to scan or seek into LINEITEM


They win by keeping multiple copies, tailored to different queries
How much storage penalty for queries in Eval?
Actually LESS storage! 2 GB vs 4.5 GB
Uncompressed data was also about 2 GB
Would be more for more queries 



MIT OpenCourseWare
http://ocw.mit.edu 

6.830 / 6.814 Database Systems
Fall 2010

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



