Problem 2

a) Traveling from x to $x+d x$ consists of both the translation in x and an accompanying translation in z by $d z=\frac{d z}{d x} d x=u d x$. Therefore, the total distance is:

$$
d s=\sqrt{d x^{2}+d z^{2}}=\sqrt{1+u^{2}} d x
$$

The time taken to accomplish this depends on the z position, and is given by:

$$
d t=\frac{d s}{z}=\frac{\sqrt{1+u^{2}}}{z} d x
$$

This in turn results in a total cost of:

$$
J=\int_{0}^{X} \frac{\sqrt{1+u^{2}}}{z} d x
$$

b) The dynamics are given as:

$$
\frac{d z}{d x}=u
$$

c) The Hamiltonian is given by:

$$
H=g(x, u)+p(x) \frac{d z}{d x}=\frac{\sqrt{1+u^{2}}}{z}+p(x) u
$$

Using the fact that H must be at a minimum with respect to u allows us to write:

$$
\frac{\partial H}{\partial u}=0=p+\frac{u}{z \sqrt{1+u^{2}}}
$$

This gives us the value of the adjoint p :

$$
p=-\frac{u}{z \sqrt{1+u^{2}}}
$$

and thus the Hamiltonian may be written:

$$
H=\frac{\sqrt{1+u^{2}}}{z}-\frac{u^{2}}{z \sqrt{1+u^{2}}}=\frac{1}{z \sqrt{1+u^{2}}}
$$

d) Knowing that H will be constant allows to obtain the differential equation:

$$
H=C=\frac{1}{z \sqrt{1+u^{2}}}
$$

or

$$
z^{2}\left(1+u^{2}\right)=z^{2}\left(1+\frac{d z^{2}}{d x}\right)=D
$$

This is the differential equation defining the optimal trajectory.
e) This differential equation describes the arc of a circle. Simulating it will give a curve as shown below:

It can also be seen by looking at the equation of a circle $d_{2}=\left(x-d_{1}\right)^{2}+z^{2}$. Differentiating w.r.t x gives:

$$
\begin{align*}
\left(x-d_{1}\right)+z \frac{d z}{d x} & =0 \tag{1}\\
\left(x-d_{1}\right)^{2} & =z^{2} \frac{d z^{2}}{d x} \tag{2}\\
d_{2}-z^{2} & =z^{2} \frac{d z^{2}}{d x} \tag{3}\\
d_{2} & =z^{2}\left(1+\frac{d z^{2}}{d x}\right) \tag{4}
\end{align*}
$$

which is the differential equation from part d .

MIT OpenCourseWare
http://ocw.mit.edu

6.832 Underactuated Robotics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

