C H A P TER A

Robotics Preliminaries

A. 1 DERIVING THE EQUATIONS OF MOTION (AN EXAMPLE)

The equations of motion for a standard robot can be derived using the method of Lagrange. Using T as the total kinetic energy of the system, and U as the total potential energy of the system, $L=T-U$, and Q_{i} as the generalized force corresponding to q_{i}, the Lagrangian dynamic equations are:

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=Q_{i}
$$

If you are not comfortable with these equations, then any good book chapter on rigid body mechanics can bring you up to speed ${ }^{1}$; for now you can take them as a handle that you can crank to generate equations of motion.

EXAMPLE A. 1 Simple Double Pendulum

FIGURE A. 1 Simple Double Pendulum

Consider the system in Figure A. 1 with torque actuation at both joints, and all of the mass concentrated in two points (for simplicity). Using $\mathbf{q}=\left[\theta_{1}, \theta_{2}\right]^{T}$, and $\mathbf{x}_{1}, \mathbf{x}_{2}$ to

[^0]denote the locations of m_{1}, m_{2}, respectively, the kinematics of this system are:
\[

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\begin{array}{c}
l_{1} s_{1} \\
-l_{1} c_{1}
\end{array}\right], \quad \mathbf{x}_{2}=\mathbf{x}_{1}+\left[\begin{array}{c}
l_{2} s_{1+2} \\
-l_{2} c_{1+2}
\end{array}\right] \\
& \dot{\mathbf{x}}_{1}=\left[\begin{array}{l}
l_{1} \dot{q}_{1} c_{1} \\
l_{1} \dot{q}_{1} s_{1}
\end{array}\right], \quad \dot{\mathbf{x}}_{2}=\dot{\mathbf{x}}_{1}+\left[\begin{array}{c}
l_{2}\left(\dot{q}_{1}+\dot{q}_{2}\right) c_{1+2} \\
l_{2}\left(\dot{q}_{1}+\dot{q}_{2}\right) s_{1+2}
\end{array}\right]
\end{aligned}
$$
\]

Note that s_{1} is shorthand for $\sin \left(q_{1}\right), c_{1+2}$ is shorthand for $\cos \left(q_{1}+q_{2}\right)$, etc. From this we can easily write the kinetic and potential energy:

$$
\begin{aligned}
T & =\frac{1}{2} \dot{\mathbf{x}}_{1}^{T} m_{1} \dot{\mathbf{x}}_{1}+\frac{1}{2} \dot{\mathbf{x}}_{2}^{T} m_{2} \dot{\mathbf{x}}_{2} \\
& =\frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{q}_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}+m_{2} l_{1} l_{2} \dot{q}_{1}\left(\dot{q}_{1}+\dot{q}_{2}\right) c_{2} \\
U & =m_{1} g y_{1}+m_{2} g y_{2}=-\left(m_{1}+m_{2}\right) g l_{1} c_{1}-m_{2} g l_{2} c_{1+2}
\end{aligned}
$$

Taking the partial derivatives $\frac{\partial T}{\partial q_{i}}, \frac{\partial T}{\partial \dot{q}_{i}}$, and $\frac{\partial U}{\partial q_{i}}\left(\frac{\partial U}{\partial \dot{q}_{i}}\right.$ terms are always zero $)$, then $\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{i}}$, and plugging them into the Lagrangian, reveals the equations of motion:

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{q}_{1} & +m_{2} l_{2}^{2}\left(\ddot{q}_{1}+\ddot{q}_{2}\right)+m_{2} l_{1} l_{2}\left(2 \ddot{q}_{1}+\ddot{q}_{2}\right) c_{2} \\
& \quad-m_{2} l_{1} l_{2}\left(2 \dot{q}_{1}+\dot{q}_{2}\right) \dot{q}_{2} s_{2}+\left(m_{1}+m_{2}\right) l_{1} g s_{1}+m_{2} g l_{2} s_{1+2}=\tau_{1} \\
m_{2} l_{2}^{2}\left(\ddot{q}_{1}+\ddot{q}_{2}\right) & +m_{2} l_{1} l_{2} \ddot{q}_{1} c_{2}+m_{2} l_{1} l_{2} \dot{q}_{1}^{2} s_{2}+m_{2} g l_{2} s_{1+2}=\tau_{2}
\end{aligned}
$$

Numerically integrating (and animating) these equations in MATLAB produces the expected result.

A. 2 THE MANIPULATOR EQUATIONS

If you crank through the Lagrangian dynamics for a few simple serial chain robotic manipulators, you will begin to see a pattern emerge - the resulting equations of motion all have a characteristic form. For example, the kinetic energy of your robot can always be written in the form:

$$
T=\frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{H}(\mathbf{q}) \dot{\mathbf{q}}
$$

where \mathbf{H} is the state-dependent inertial matrix. This abstraction affords some insight into general manipulator dynamics - for example we know that \mathbf{H} is always positive definite, and symmetric[7, p.107].

Continuing our abstractions, we find that the equations of motion of a general robotic manipulator take the form

$$
\mathbf{H}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{G}(\mathbf{q})=\mathbf{B}(\mathbf{q}) \mathbf{u}
$$

where \mathbf{q} is the state vector, \mathbf{H} is the inertial matrix, \mathbf{C} captures Coriolis forces, and \mathbf{G} captures potentials (such as gravity). The matrix \mathbf{B} maps control inputs \mathbf{u} into generalized forces.

EXAMPLE A. 2 Manipulator Equation form of the Simple Double Pendulum
The equations of motion from Example 1 can be written compactly as:

$$
\begin{aligned}
\mathbf{H}(\mathbf{q}) & =\left[\begin{array}{cc}
\left(m_{1}+m_{2}\right) l_{1}^{2}+m_{2} l_{2}^{2}+2 m_{2} l_{1} l_{2} c_{2} & m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} c_{2} \\
m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} c_{2} & m_{2} l_{2}^{2}
\end{array}\right] \\
\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) & =\left[\begin{array}{cc}
0 & -m_{2} l_{1} l_{2}\left(2 \dot{q}_{1}+\dot{q}_{2}\right) s_{2} \\
m_{2} l_{1} l_{2} \dot{q}_{1} s_{2} & 0
\end{array}\right] \\
\mathbf{G}(\mathbf{q}) & =g\left[\begin{array}{c}
\left(m_{1}+m_{2}\right) l_{1} s_{1}+m_{2} l_{2} s_{1+2} \\
m_{2} l_{2} s_{1+2}
\end{array}\right]
\end{aligned}
$$

Note that this choice of the \mathbf{C} matrix was not unique.
The manipulator equations are very general, but they do define some important characteristics. For example, $\ddot{\mathbf{q}}$ is (state-dependent) linearly related to the control input, \mathbf{u}. This observation justifies the form of the dynamics assumed in equation 1.1.

MIT OpenCourseWare
http://ocw.mit.edu

6.832 Underactuated Robotics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

6.832 Underactuated Robotics

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Try [27] for a very practical guide to robot kinematics/dynamics, [35] for a hard-core dynamics text or [85] for a classical dynamics text which is a nice read

