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Scheme Computability 

What can and can’t Scheme do? We can begin to pin this question down by asking what functions 
can be computed by Scheme procedures. 

Computability theory is traditionally developed using functions on the natural numbers. Com
putations on other types of objects such as programs, formulas, or graphs are modelled by cod
ing these objects into natural numbers. An advantage of developing computability theory us
ing Scheme is that Scheme programs are a special case of Sexpressions that have an immediate 
representation in Scheme without indirect coding. So we consider computability over the set of 
Sexpressions. 

However, we will restrict Scheme numbers to be integers, and also omit Scheme expressions 
containing numerical operators like / or sin that do not return integer values. This avoids 
the ambiguities of numerical analysis—how accurately should the value of (sin 3) be calcu
lated?, as well as other messy details of general numerical calculation—e.g., in MIT Scheme, 
(= 1 1.0000000000000001) returns #t, 

1 SExpressions and Printable Syntactic Values 

The Scheme printer has standard ways of displaying certain values returned by evaluation: self
evaluating values like strings and booleans print out “as themselves,” symbols print out as their 
names, and lists print out as a parenthesized sequence of the standard printed representations 
of the list elements. These are called the printable values. For example, the value of the Scheme 
expression 

(append (list (quote a) 2 3 (list) "6.844 is") (1) 
(list (cons "great" (quote ())))) 

is a list structure of strings, symbols, and numbers that would print out as: 

(a 2 3 () "6.844 is" ("great")). (2) 

The only kind of values that are not printable are procedures, list structures containing procedures, 
and circular conscell structures. 

In real Scheme, nonlist pairs are included among the printable values and would be displayed 
with “dotted pair” notation. For example, the value of 

(cons (quote a) (cons 2 "bb"))
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would be displayed by the Scheme printer as (a 2 . "bb"). Such nonlist pairs are of no par
ticular importance, and for simplicity, we will exclude them from the class of values we consider 
printable; likewise, dotted pair notation is not allowed in standard printed representations. 

Formally, the grammar for �sexpr�’s, the standard printed representations we consider, is: 

�sexpr� ::= �integer� �boolean� �string� �identifier� ( �sexpr�∗)| | | |

Scheme supports a special form, quote, to create printable values. Namely, for any Sexpression, 
S, the value of the Scheme expression (quote S) prints out as S . 

We can extend our Scheme Substitution Model to handle quoted Sexpressions by applying the 
following “desugaring” rules to translate quoted expressions into expressions of kernel Scheme— 
in which quotes only apply to identifiers. 1 

(quote K) → K if K is �integer�, �boolean�, or �string� 
(quote ()) → �nil� 

(quote (S 1 S2 . . . )) → (list (quote S1) (quote S2) . . . ) 

Application of these rules will desugar S into a Scheme expression, unprint(S), that is actually a 
syntactic value in our formal Substitution Model for Scheme. That is, 

(quote S) ↓ unprint(S) 

for all Sexpressions, S. For example, the expression (2) would desugar back into (1). 

The syntactic values obtained by desugaring quoted Sexpressions are called the printable syntactic 
values, �printablesval�. These can also be described by a simple grammar: 

�printablesval� ::= �integer� �boolean� �string� (quote �identifier�)| | |
�nil� (list �printablesval� +)| |

�nil� ::= (list) 

It is easy to check that unprint(.) is a bijection from �sexpr� to �printablesval� and print(.) is its 
inverse.2 Namely, 

print(unprint(S)) =S for all S ∈ �sexpr� , 
unprint(print(V )) =V for all V ∈ �printablesval� . 

1It’s wiser not to mix the desugaring rules with the other Substitution Model rules because Proposition 3.1 below 
fails when we apply quote as an operation. However, the desugaring rules could be included with the rest of the 
simple control rules without violating Proposition 3.1 because of the redeeming technical condition that �hole�’s in 
contexts may not be quoted. 

2MIT Scheme regrettably violates the official Scheme standard, using, for historical reasons, the same object for the 
empty list and the Boolean #f. The result is that (quote ()) and #f may both print out as ()—or as #f—depending 
on the printer. Officially, these should be distinct values, (quote ()) should print out as (), and (quote #f) should 
print out as #f. This flaw is supposed to be repaired in the next release of MIT Scheme. 
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Problem 1. Define a Scheme expression, Prnbl?, such that evaluation of (Prnbl? M ) 

returns #t if M returns some �printablesval�, 
returns #f if M returns some nonprintable value, 

for every Scheme expression, M . 

Your Prnbl? procedure should work on “real” expressions M which may include setcar! and 
similar listmutating procedures and should return #f if M returns a list structure with circular or 
shared substructures. 

2 The Quotemark Abbreviation 

The notation ’S is a convenient abbreviation for the Sexpression (quote S). Real Scheme im
plementations support this abbreviation, but in these notes we will use the quotemark as a nota
tional shorthand, not an extension of Scheme. So, for example, we would write 

’(’a ’2 b 3) 

as shorthand for 

(quote ((quote a) (quote 2) b 3)). (3) 

The Scheme expression (3) unprints into the �printablesval�: 

(list (list (quote quote) (quote a))

(list (quote quote) 2) (quote b) 3),


that itself has the shorthand description 

(list (list ’quote ’a) (list ’quote 2) ’a 3). (4) 

Formally, �sexpr�’s do not include the quotemark, and Scheme �expression�’s are still a subset of 
�sexpr�. So 

(quote a)


is a Scheme �expression�, and 

’a (5) 

is shorthand for it, but (5) is not itself an Sexpression. 
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3 Computable Functions on SExpressions 

In these notes, Scheme will be the language without call/cc (or abort). 3 This allows us to 
avoid the complexity of reasoning about observational equivalence when these procedures are 
available, as discussed in the Notes on the Substitution Model. In particular, without call/cc, 
we have from these Notes: 

Proposition 3.1. If M 
∗ 

N , then M ≡ N .→ 

nDefinition 3.2. A partial function f : �sexpr� → �sexpr� is Scheme computable iff there is a 
Scheme expression, F , such that 

(F ’S 1 . . . ’S n) ↓ unprint(f(S1, . . . , Sn)) 

for all (S1, . . . , Sn) ∈ domain (f), and also, 

(F ’S 1 . . . ’S n) ↑ 

for all (S1, . . . , Sn) �∈ domain (f). Such an expression F is said to compute the partial function f . 

Note that we consider integers and strings to be special cases of Sexpressions. So functions like 
addition on the integers or “doubling” on strings (concatenating a string with itself) can be re
garded as partial functions on the set of all Sexpressions. Namely, addition on Sexpressions 
is undefined when either of its arguments is not an integer, and doubling is undefined when 
its argument is not a �string�. Similarly, the print function print(.), which is a total function 
from �printablesval� to Sexpressions, can be regarded as a partial function on the set of all S
expressions by adopting the convention that print(S) is undefined if S is not a �printablesval�. 

This convention allows us to say that addition and doubling are computable partial functions, e.g., 
the Scheme builtin + is an expression that computes the addition function, and 

(lambda (s) (stringappend s s))


computes the doubling function. 

Definition 3.3. Let finalvalue(.) be the partial function mapping Scheme �expression�’s to their 
final values, if any. That is, 

finalvalue(M) = V iff M V↓ 

and domain (finalvalue(.)) is the set of M that converge. Define output(M) of M to be the printed 
form, if any, of finalvalue(M). That is, 

output(M) ::= print(finalvalue(M)). 

3There is no loss of generality in this restriction, because Scheme without call/cc can simulate Scheme with that 
feature. We’ll discuss this more fully in Part II of these Notes. 
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In working with partial functions, it’s useful to adopt the convention that if f, g are partial func
tions, then the equality f(a) = g(a) is considered to hold when f(a) and g(a) are both undefined, 
as well as when both are defined and have equal values. With this convention, we can say that 

F computes f iff output((F ’S 1 . . . ’S n)) = f(S1, . . . , Sn). (6) 

for all Sexpressions S1, . . . , Sn. 

Problem 2. Explain why output(.) is computable. This is a fundamental result we’ll discuss fur
ther in Part II of these Notes. 

We know a lot about Scheme programming, and this translates to knowing a lot about the prop
erties of computable functions. For example, 

Lemma 3.4. The computable functions of one argument are closed under composition. 

Proof. If F computes f and G computes g, then we claim that 

C ::= (lambda (x) (F (G x))) 

computes f ◦ g.


It’s worth working through the definitions at least one time to justify this kind of claim.


Since G computes g, we have by definition of “computes” that (G ’S ) ↓ unprint(g(S)) for any

Sexpression S. By definition of convergence, this means that (after garbage collection):


(G ’S ) 

Likewise, since F computes f , we have 

(F ’g (S)) 

∗ ( ( ))unprint Sg .→ 

∗ ( ( ( )))unprint f Sg .→ 

(7)


(8)


Since G computes g in an empty environment, it will still do so in any environment. (We leave it 
to the reader to confirm this property of the Substitution Model.) In particular, suppose 

F ↓ (letrec (B F ) VF ). (9) 

So by Substitution Model rules, we can conclude that 

∗
(letrec ( ) (B VF F→

∗
(letrec ( ) (B VF F→

∗ ( ( ( )))unprint f Sg→

(F (G ’S )) (G ’S ))) (by (9))


unprint(g(S)))) (by (7)) 

(by (9) and (8)). (10) 

Therefore,

∗

( F→ (G ’S ))(C ’S ) (by Submodel rules)

∗ ( ( ( )))unprint f Sg→ (by (10)) 

as required. 
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Problem. Suppose f is a twoargument function on the natural numbers that is a total computable 
function. Prove that the function min[f ] is partial computable, where 

min[f ](n) ::= min {k ∈ N f (n, k) = 0} .|

Problem. Let f be the partial function whose domain is the set of Arithmetic Expressions from 
previous Notes, where f (e) is the canonical form of e. (You may assume that variables are ordered 
by Scheme’s symbol<?) Explain why f is Scheme computable. 

Problem 3. Note that (lambda (x) x) computes the identity function on Sexpressions. Give 
an example of another Scheme expression, F , such that F computes the identity function on S
expressions, but F is not observationally equivalent to (lambda (x) x). 

Problem. Suppose we applied Definition 6 allowing expressions in Scheme with call/cc, with 
the convention that aborted values print the same as returned values. That is, print((abort V ))::= 
print(V ) for each syntactic value, V . Give an example of an expression, G that uses call/cc to 
compute a function, g, and another expression, F , without call/cc that computes a function, f , 
such that 

(lambda (x) (F (G x))) 

does not compute f ◦ g. 

Definition 3.5. A set, S, of Sexpressions is Scheme decidable iff its membership function is Scheme 
computable, i.e., the function mS : �sexpr� → �boolean� such that 

mS (S) ::= 
#t for S ∈ S, 

#f for S �∈ S, 

is Scheme computable. A Scheme expression that computes the membership function is called a 
decider for S. 

For example, the Scheme builtin string? is a decider for the set �string� of strings. 

Problem 4. Explain why the set, �expression�, of Scheme expressions, and the set of closed �expression�’s, 
are both decidable. Hint: See the freevariables procedure defined in the Substitution Model 
implementation. 

For any set S of Sexpressions, let S be the complement of S, i.e., the set of Sexpressions not in S. 
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Lemma 3.6. If S is Scheme decidable, then so is S. 

Proof. Let F be an expression that computes m . Then (lambda (x) (not (F x))) computesS 

m .S 

Note that this proof implicitly appeals to Proposition 3.1 in the assuming that 

finalvalue((F M )) = #t implies finalvalue((not (F M ))) = #f. 

In general, if M↓, then Proposition 3.1 implies that M ≡ finalvalue(M). So it’s OK to replace 
M by finalvalue(M) in an evaluation. In particular, since (F M ) ↓ #t, we can conclude that 
(not (F M )) ↓ (not #t). 

Problem 5. Prove that if S1 and S2 are Scheme decidable, then so are S 2 and S 2.1 ∪ S 1 ∩ S

Definition 3.7. For any Scheme computable partial function, f : �sexpr� → �sexpr�, and set, S, 
of Sexpressions, define4 

f(S) ::= {f(S) S ∈ (S ∩ domain (f))} ,|
f−1(S) ::= S ∈ domain (f) and f(S{S |	 ) ∈ S} . 

Problem 6. Prove that if f is a Scheme computable total function, and S is decidable, then so is 
f−1(S). 

Definition 3.8. Let S1 and S2 be sets of Sexpressions. We say that S1 is manyone reducible5 to S2, 
in symbols, 

2,S1 ≤m S

iff there is a total computable function, f , such that S1 = f−1(S2). The function, f , is said to 
manyone reduce S1 to S2. 

The “ ≤” notation for manyone reducibility highlights the fact that this relation is transitive. This 
follows because if f manyone reduces S1 to S2, and g manyone reduces S2 to S3, then g ◦ f 
manyone reduces S1 to S3. So we could rephrase the result of Problem 6 as saying that decidability 
inherits downward under ≤m. 

A function, f , that manyone reduces S1 to S2 can be thought of as a way to translate a membership 
question about S1 into one about S2. Namely, it follows from the definition that f manyone 
reduces S1 to S2 is equivalent to the condition that 

1 iff f(S) ∈ S2,S ∈ S

for all Sexpressions, S. 
4If f	 is a partial function from a set, A to a set B, then we define domain (f ), the domain of f , to be the set 

f (a) is defined}. So domain (f ) is a subset of A and equals A iff f is a total function. Note that in other {a ∈ A |
settings, what we call the domain of f is called the support of f , and A is called the domain. In these Notes we follow 
the standard usage in Computability Theory, letting “domain” be a synonym for “support.” 

5Sipser calls ≤m “map reducibility.” 
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Definition 3.9. A set S of Sexpressions is halfdecidable iff there is a Scheme computable partial 
function whose domain is S. A Scheme expression that computes such a function is called a half
decider for S. 

Halfdecidable sets are usually called recursively enumerable (r.e.) sets, and sometimes are also 
called recognizable sets. 

Lemma 3.10. If a set of Sexpressions is decidable, then it and its complement are also halfdecidable. 

Proof. Suppose D is decidable. Then it has a decider, D. Then 

(lambda (x) (or (D x) Ω0)) 

is a halfdecider for D, where Ω0 is any closed expression such that Ω0↑. For example, let 

Ω0 ::= ((lambda (x) (x x)) (lambda (x) (x x))). 

By Lemma 3.6, D is also decidable, and so is also halfdecidable. 

The converse of Lemma 3.10 also holds: if a set and its complement are both halfdecidable, then 
the set is wholly decidable. We’ve chosen the name “halfdecidable” to emphasize this fact. We’ll 
postpone the proof of this converse to Part II. 

Problem 7. (a) Prove that if S1 and S2 are halfdecidable, then so is S 2.1 ∩ S

(b) Prove that if f is a Scheme computable partial function, and S is halfdecidable, then so is 
f−1(S). 

Note that as a special case of Problem 7(b), it follows that also half decidability inherits downward 
under ≤m. 

Problem 8. Two sets are said to be almost equal iff there are only finitely many elements in one but 
not the other. Show that if S1 is halfdecidable and S2 is a set of Sexpressions which is almost 
equal to S1, then S2 is also halfdecidable. 

Definition 3.11. A nonempty set, S, of Sexpressions is computably countable iff S = f(N) for some 
computable partial function, f : �sexpr� → �sexpr�, such that N ⊆ domain (f). Such an f is said 
to count S. 

In other words, there is a procedure to enumerate all the elements of S, possibly with repetitions, 
in some order, namely, successively compute f(0), f(1), . . . . This is the reason for the phrase 
“recursively enumerable.” 

Lemma 3.12. Every computably countable set is halfdecidable. 
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Proof. Let S be computably countable, so S = f(N) for some f as in Definition 3.11. Then a 
procedure to halfdecide whether any given input, S, is in S, is to compute f(0), f(1), . . . stopping 
if and when S shows up in the list. So the following expression is a halfdecider for S, where F is 
an expression that computes f : 

(lambda (s)

(letrec


((try (lambda (n)

(if (equal? s (F n)) #t (try (+ n 1))))))

(try 0)))


In Part II we’ll prove the converse of Lemma 3.12, allowing us to conclude that a nonempty set 
is computably countable iff it is halfdecidable. For now, it’s informative to solve the following 
problems without assuming this fact. 

Problem 9. Suppose S and S � are computably countable. Prove that: 

(a) If g is a total computable function, then g(S) is computably countable. 

(b) S ∪ S � and S ∩ S � are computably countable. 

(c) S+ ::= {(S 1 . . . Sn) Si ∈ S for 1 ≤ i ≤ n} is computably countable. |

Problem 10. (a) Prove that the set of �string�’s is computably countable. 

(b) Conclude that the set of symbols is computably countable. Hint: Look up string>symbol 
in Revised5 Scheme Manual. 

Problem 11. Prove the set of Sexpressions is computably countable. 

4 Applications of Self Applications 

4.1 SelfReproducing Expressions 

For practice with quoting, and in preparation for the noncomputability arguments in the next 
section, we consider how to make “selfreproducing” Scheme expressions. A Scheme expression, 
P , is selfreproducing iff evaluation of P returns a value that prints out as P , that is, 

output(P ) = P. 
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All selfevaluating expressions have this property of course, but it’s not so obvious how to find 
one that is not selfevaluating. Here’s how: let L be an expression such that 

output((L ’S )) = (S ’S ) (11) 

for any Sexpression, S. For example, we could define 

L ::= (lambda (s) (list s (list ’quote s))). 

Now substituting L for S in (11) above yields 

output((L ’L )) = (L ’L). 

In other words, we can choose P to be (L ’L), namely, 

P ::=((lambda (s) (list s (list (quote quote) s))) 

(quote (lambda (s) (list s (list (quote quote s)))))). 

Problem 12. (a) Check that this last P is selfreproducing by evaluating it in MIT Scheme.6 

(b) Exhibit two other selfreproducing expressions and check them in real Scheme. Turn in your 
prettyprinted output. Hint: L need only satisfy the specification (11). 

Problem 13. An expression D is doubly selfreproducing iff output(D) = (D D ). Exhibit a doubly 
selfreproducing expression and check that it works in real Scheme. Turn in your output. 

4.2 The Y Operator [Optional] 

Self application provides a way to formulate recursive definitions in Scheme without using letrec, define, or set!. 
Although mainly a curiosity7, one corollary of the construction is that a small fragment of Scheme, containing only 
variables, combinations, and lambda expressions—no numbers, lists or other data types, nor any special forms be
sides lambda—can simulate the full language, and therefore this fragment inherits all the undecidability properties of 
Scheme. 

To explain how this works, let’s begin with one of the most familiar examples: 

(define factorial

(lambda (x)


(if (zero? x) 1 (* x (factorial ( x 1))))))


A way to understand this simple recursive definition of factorial begins with the observation that the variable 
factorial occurs free in the body of the definition. So we can regard the body as a function, L(factorial), of this free 
variable, namely, L is defined by 

6This works in MIT Scheme because the printer displays the value of (quote (quote a)) as (quote a). Other 
Scheme printers maintain the quotemark abbreviation in their output and display the value of (quote (quote a)) 
as ’a. 

7The way the Y operator works has also been used as a basis for optimizations in a Scheme compiler: INSERT 
CITATION to jinx paper. 
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(lambda (factorial)

(lambda (x) (if (zero? x) 1 (* x (factorial ( x 1))))))


It will simplify the discussion if we rename the parameter to be f: 

(define L

(lambda (f)


(lambda (x) (if (zero? x) 1 (* x (f ( x 1)))))))


Now the factorial procedure is a “fixed point” of L: 

factorial ≡ (L factorial). 

In general, a fixed point of a function, L, is an element, f , such that L(f) = f . A “fixed point operator,” Y , is used to 
obtain fixed points of procedures like L. Informally, we want Y (L) = L( Y (L) ). More precisely, we want a Scheme 
procedure, Y, satisfying: 

(Y l) ≡ (lambda (z) ((l (Y l)) z)). 

Notice that we have wrapped the righthand side of this equivalence in (lambda(z) ( . . . z)). This ensures that

(Y l) will converge in any environment in which l is defined.


So instead of defining factorial recursively, we could instead have written:


(define factorial

(Y (lambda (f) (lambda (x) (if (zero? x) 1 (* x (f ( x 1))))))))


To arrive at a definition of Y, let 

Ml ::= (lambda (x) (lambda (z) ((l (x x)) z))), 

so 

(M l x) ≡ (lambda (z) ((l (x x)) z)) . 

Then, 

(M l Ml ) ≡ (lambda (z) ((l (M l Ml )) z)). 

That is, (M l Ml ) is the desired fixed point of l, so we could define (Y l) to be (M l Ml ): 

(define Y

(lambda (l)


((lambda (x) (lambda (z) ((l (x x)) z)))

(lambda (x) (lambda (z) ((l (x x)) z))))))


Problem 14. Evaluate ((Y L) 3) in Scheme and in the Substitution Model interpreter, using the definitions Y and L 
above. 

Problem 15. Explain what happens if we omitted the (lambda (z) . . . z) wrapper and used the definition: 

(define Y

(lambda (l)


((lambda (x) (l (x x)))

(lambda (x) (l (x x))))))


Problem 16. Adapt the definition of Y so it works for multiargument fixed points, namely, so 

(Y f) ≡ (lambda l (apply (f (Y f)) l)). 
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5 The Halting Problem 

We aim to prove the most famous theorem in Computability Theory: the undecidability of the 
Halting Problem. The problem is to determine whether the evaluation of any given Scheme ex
pression will “halt.” To formalize this, we’ll interpret halting to mean converging, and define 

Halts ::= {M M is a closed Scheme �expression� and M ↓} .| 

We remark that Halts is half decidable: if E is a Scheme expression defining an interpreter for 
Scheme (what AbelsonSussman call a “metacircular interpreter”) then 

(E ’M emptyenv) ↓ iff M ↓ 

for all Scheme expressions, M . So a metacircular Scheme interpreter combined with a decider for 
closed �expression�’s would provide a halfdecider for Halts. We’ll explore this further in Part II. 

By Lemma 3.10, this remark implies that showing that Halts is undecidable is equivalent to show
ing that its complement is not even halfdecidable. 

Theorem 5.1. (The Halting Theorem) Halts is not halfdecidable. 

We’ll prove this indirectly, by first proving: 

Lemma 5.2. The set 

Selfdiv ::= {M M is not a closed �expression� or (M| ’M ) ↑} 

is not halfdecidable. 

Assuming Lemma 5.2 for the moment, we can easily prove The Halting Theorem: 

Proof. [of Theorem 5.1] By definition, 

S ∈ Selfdiv iff (S ’S ) ∈ Halts, 

for all Sexpressions, S. It follows that Selfdiv ≤m Halts under the mapping, f , where f (S) ::= 
(S ’S ). The expression 

(lambda (s) (list s (list ’quote s))) 

computes f , so by Problem 7(b), if Halts was halfdecidable, then Selfdiv would be as well, con
tradicting Lemma 5.2. 

The definition of Selfdiv was chosen just to make the proof of Lemma 5.2 almost immediate: 

Proof. To prove Lemma 5.2, let H be a halfdecidable set, and H a halfdecider for it. So by defini
tion, of H , 

iff (H ’S ) ↓,S ∈ H 

for all Sexpressions, S. 
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Now since H is a closed Scheme expression, 

H ∈ Selfdiv iff (H ’H )↑, 

by definition of Selfdiv. So 

H ∈ H iff (H ’H )↓ iff H �∈ Selfdiv. 

In other words, so H = Selfdiv because H is in one and not the other. Since Selfdiv is not equal 
to any halfdecidable set, it must not be halfdecidable. 

Any closed Scheme expression, M , is by definition a halfdecider for a set HM : 

Definition 5.3. If M is a closed Scheme expression, then 

M ::= {S ∈ �sexpr� (MH | ’S ) ↓} . 

If M is not a closed Scheme expression, then HM ::= ∅. 

For sets A, B, we say that an element, a, is a witness that A =� B when a is in one of the sets and 
not the other. That is, a ∈ (A −B) ∪ (B −A). The proof of Lemma 5.2 shows that finding a witness 
that HM = Selfdiv is trivial: the expression M is a witness. More generally, a set, P , is said to be 
productive when there is a Scheme program that, given M , finds a witness that P =� M :H
Definition 5.4. A set, P , of Sexpressions is productive iff there is a total computable function, 
w : �sexpr� → �sexpr�, such that 

M iff w(M ) �∈ P.w(M ) ∈ H

Such a function, w, is called a witness function for P . 

Clearly, no productive set can be halfdecidable, since it differs from every halfdecidable set. So 
now we can rephrase the conclusion that comes out of the proof of Lemma 5.2: the set Selfdiv 
is productive with witness function equal to the identity function on Sexpressions. Of course 
Selfdiv was carefully contrived to be productive with a trivial witness function, but there are 
many uncontrived examples. For example, Halts is also productive. This follows from the fact 
that Selfdiv ≤m Halts along with: 

Lemma 5.5. Productivity inherits upward under ≤m. 

The concept of productivity will be useful when we return to a discussion of proof systems. 

Problem 17. Prove Lemma 5.5. 

Problem 18. Prove that every halfdecidable set is ≤m Halts. 

Problem 19. (a) Prove that A ≤m B iff A ≤m B. 

(b) Conclude that Halts and Halts are incomparable under ≤m. 
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6 Incompleteness 

Suppose we have some formal notation for expressing mathematical assertions, and some system 
for proving assertions. The proof system is called sound if all the provable asertions are actually 
valid. The proof system is called complete if all the valid assertions are provable. In previous Notes, 
we saw a sound and complete proof system for arithmetic equalities. 

In considering Scheme observational equivalences, we will use assertions that are Sexpressions 
in the form of equations between Scheme expressions. In this case, the valid assertions will be 
the set, E , of equations that are true when equality is interpreted to be observational equivalence. 
That is, 

E ::= {(M = N ) M, N are �expression�’s and M ≡ N} .|

6.1 First Incompleteness Theorem 

We aim to prove: 

Theorem 6.1. First Incompleteness Theorem for Scheme equivalence: If a proof system for Scheme 
observational equivalences is sound, then it is incomplete. 

Notice that this is a wonderfully general theorem, which applies to all possible proof systems, not 
just some particular ones we might devise based on the various observational equivalences we 
have established up to this point. Of course, to be truly general, we need a notion of “proof 
system” that leaves no loopholes: every possible set of axioms and inference rules should count 
as a proof system; in fact, we want any procedure for determining validity to count as a proof 
system. For example, a system for proving arithmetic equations by transforming the two sides of 
the equation into identical canonical forms should count as a proof system—one that we know is 
also sound and complete. 

There is one essential property we will require of a proof system. The purpose of proving an 
assertion is to confirm the truth of the assertion even to someone who can’t understand the proof. 
They need only be able to check—in a purely mechanical way—that the proof is wellformed 
according to the rules of the proof system. 

In particular, a proof system has things called proofs that serve to prove things called assertions. 
In a formal proof system, the assertions and proofs are objects that we can safely assume are 
represented by Sexpressions. The simple requirement that proofs be mechanically checkable now 
implies: 

Theorem 6.2. The set of assertions provable using any given proof system is halfdecidable. 

Proof. The condition that a proof be checkable “without understanding” can be understood tech
nically as meaning that the proofs are a decidable set, D, of Sexpressions. 

In addition, there must be a mechanical way to determine what assertion the proof proves. This 
is called the upshot of the proof. So technically, this means there is a computable function upshot : 
�sexpr� → �sexpr� that maps any proof to its upshot. 
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Now we have a way to enumerate the provable asertions: enumerate the Sexpressions, returning 
the upshot of those expressions that are proofs, and returning some fixed provable assertion oth
erwise. To be precise, let A be some provable assertion, let proof? be a decider for the set of proofs, 
upshot be an expression that computes the upshot function, and C be an expression that computes 
a counting function for the set of all Sexpressions (cf., Problem 11). Then the following expression 
counts the provable assertions: 

(lambda (n) (if (proof? (C n)) (upshot (C n)) ’A)). 

So the provable assertions are computable countable, and therefore, by Lemma 3.12, are half
decidable as claimed. 

Problem 20. Sketch how to write a Scheme program computing a decider for proofs in the arith
metic equation proof system of the Notes. What is the upshot function for these proofs? 

Notice that Theorem 6.2 holds regardless of the meaning of assertions. But if assertions are mean
ingful and a proof system is sound, then it follows that the provable assertions are a halfdecidable 
subset of the valid assertions. Now, if we show that the valid assertions are not halfdecidable, 
then the assertions provable using any given system must be a proper subset of the valid assertions. 
In other words, there must be a valid assertion that is not provable: the system is incomplete. 

Therefore, to prove the First Incompleteness Theorem for Scheme equivalence, we need only show 
that the set, E , of true equivalences is not halfdecidable. In fact, we can prove something stronger: 

Lemma 6.3. E is productive. 

Proof. We showed in the Notes on the Scheme Substitution Model that all divergent expressions 
are observationally equivalent, so 

M iff M ≡ Ω0,↑ 

for all Scheme expressions, M . 

Now let f : �sexpr� → �sexpr� be defined by the rule 

f (M ) ::= 
(M = Ω0), if M is a closed Scheme �expression� , 
(Ω 0 = Ω0), otherwise. 

Clearly f is computable, because it is computed by the expression 

(lambda (m) (if (D m) (list m ’= ’Ω 0) ’(Ω 0 = Ω0)) 

where D is a decider for the closed Scheme expressions (cf. Problem 4). It follows that 

M ∈ Halts iff M is not a closed �expression� , or M ↑ 

iff M is not a closed �expression� , or M ≡ Ω0 

iff f (M ) ∈ E . 
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Hence Halts ≤m . Since we know Halts is productive, we have by Lemma 5.5 that E is also E
productive. 

A consequence of Lemma 6.3 is that given any proof system for Scheme equivalences, specifically, 
given a halfdecider for the equations provable in the system, we can apply the witness function 
for E to the halfdecider to obtain an equation that is either 

• provable but not in E , implying that the system is unsound, or 

• in E but not provable, implying that the system is incomplete. 

Notice that we can accomplish this without assuming that the system is sound.


A final remark: the proof of Lemma 6.3 also demonstrates that Halts ≤m 0 where E0 is the set of
E
valid equivalences of the form (M = Ω0): 

Definition 6.4. 

0 ::= {(M = Ω0) M is an �expression� and M ≡ Ω0} .E |

So we have 

Corollary 6.5. E0 is productive. 

7 Scott’s Rice’s Theorem 

Two general theorems due to Dana Scott characterize a large class of sets that are either unde
cidable or not even halfdecidable. Scott’s results extended earlier theorems, due to Rice, to a 
Schemelike setting. 

Definition 7.1. Let G and H be sets of Sexpressions. A total function, s : �sexpr� → �sexpr�, 
such that s(A) = #t for A ∈ G, and s(B) = #f for B ∈ H is said to be a separator of G and H. The 
sets are Scheme separable iff there is a Scheme computable separator for them. G and H are Scheme 
inseparable iff they are not Scheme separable. 

By definition, any two nondisjoint sets will trivially be inseparable. Also, a set is decidable iff it 
and its complement are Scheme separable. This follows because the membership function for a 
set is, by definition, a separator of the set and its complement. In fact, the membership function 
separates a decidable set from every set contained in its complement. So two disjoint Scheme 
inseparable sets must both be undecidable. 

Definition 7.2. A set S of Sexpressions is submodelinvariant if 

(M 
∗ 

N and N ∈ S) implies→ M ∈ S 

for all closed Scheme expressions M, N . 
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For example, Halts is submodelinvariant set of Sexpressions, because if M

M iff N ↓. Likewise, Halts is submodelinvariant. ↓

∗ →N , then obviously


Theorem 7.3. (Scott’s Rice’s First Theorem.) Let G and H be nonempty, submodelinvariant sets of 
Sexpressions. Then G and H are Scheme inseparable. 

So Halts and its complement satisfy the conditions of Theorem 7.3, and so are inseparable. This 
provides another proof that neither Halts nor its complement is Scheme decidable. 

A more interesting example is the sets {M finalvalue(M ) = 1} and {M finalvalue(M ) = 2}.| |
These are disjoint sets that obviously satisfy the conditions of Theorem 7.3, so they are Scheme 
inseparable, and hence neither is decidable. 

Finally, let Gstore be the set of expressions, M , such that the builtin operation cons is applied 
an infinite number of times in the evaluation of M . Then Gstore and its complement are disjoint 
submodelinvariant sets, and so are both undecidable. 

Proof. We prove Theorem 7.3 by contradiction: suppose there was a Scheme computable separator, 
t, for G and H. Let T be the Scheme expression that computes t. 

By hypothesis, there are Scheme expressions G0 ∈ G and H0 ∈ H. Let s be a variable not free in T , 
G0 or H0, and define the “Perverse” expression, 

P ::= (lambda(s) (if (T (list s (list ’quote s))) H0 G0)). 

Now suppose S is an Sexpression such that 

(T ’(S ’S )) ↓ #t. 

Then 

(P ’S )
∗ →H0. 

Hence by submodelinvariance, 

(P ’S ) ∈ H. 

Now by definition of the separator computed by T , we conclude that 

(T ’(P ’S )) ↓ #f. 

Conversely, by the same argument 

(T ’(S ’S )) ↓ #f implies (T ’(P ’S )) ↓ #t. 

That is, for every Sexpression, S, 

(T ’(S ’S )) ↓ #t iff (T ’(P ’S )) ↓ #f. (12) 

Now let S be P and then M be (P ’P )) in (12). This yields 

(T ’M ) ↓ #t iff (T ’M ) ↓ #f. (13) 

But (13) can only hold if (T ’M ) ↑, contradicting the fact that the separator, t, is a total function.
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Theorem 7.4. (Scott’s Rice’s Second Theorem.) Let S be a set of Sexpressions with submodelinvariant, 
nonempty complement. If Halts ⊆ S, then S is not halfdecidable. 

The proof of the Second Theorem is similar to that of the First. 

These two theorems reveal that no Scheme procedure can predict a nontrivial fact about the con
tinuing evaluation or value of an arbitrary Scheme expression presented as input. Since we know 
that Scheme can simulate any other programming language, we can simply say that no compu
tational procedure whatsoever can reliably determine any nontrivial property of the behavior of 
Scheme expressions. 

Problem 21. Prove Scott’s Rice’s Second Theorem 7.4. 

Problem 22. Strengthen Theorem 7.4 so that it directly implies that neither the set Gstore above nor 
its complement are halfdecidable. 


	S-Expressions and Printable Syntactic Values
	The Quote-mark Abbreviation
	Computable Functions on S-Expressions
	Applications of Self Applications
	Self-Reproducing Expressions
	The Y Operator [Optional]

	The Halting Problem
	Incompleteness
	First Incompleteness Theorem

	Scott's Rice's Theorem

