6.845 Problem Set 2: Basic Training for the BQP Army

Do any 7 of the 10 problems - the remaining 3 are extra credit.

1. Distinguishing two quantum states.

(a) Show that there exists a measurement that, given as input either $|\psi\rangle=a|0\rangle+b|1\rangle$ or $|\varphi\rangle=$ $a|0\rangle-b|1\rangle$, for some real numbers a, b with $a^{2}+b^{2}=1$, correctly identifies which state it was given with probability $\frac{1}{2}(a+b)^{2}$.
(b) Given two pure quantum states $|\psi\rangle=\alpha_{1}|1\rangle+\cdots+\alpha_{N}|N\rangle$ and $|\varphi\rangle=\beta_{1}|1\rangle+\cdots+\beta_{N}|N\rangle$, recall that their inner product is

$$
\langle\psi \mid \varphi\rangle=\alpha_{1}^{*} \beta_{1}+\cdots+\alpha_{N}^{*} \beta_{N} .
$$

Show that unitary transformations preserve inner product: that is, if $\left|\psi^{\prime}\right\rangle=U|\psi\rangle$ and $\left|\varphi^{\prime}\right\rangle=U|\varphi\rangle$, then $\left\langle\psi^{\prime} \mid \varphi^{\prime}\right\rangle=\langle\psi \mid \varphi\rangle$.
(c) Show that there exists a measurement that, given as input either $|\psi\rangle$ or $|\varphi\rangle$ each with probability $\frac{1}{2}$, correctly identifies which state it was given with probability $\frac{1}{2}+\frac{1}{2} \sqrt{1-|\langle\psi \mid \varphi\rangle|^{2}}$. [Hint: Use symmetry to reduce to part (a.).]
2. Trace distance. Recall the formalism of density matrices from pset1. A density matrix ρ is an $N \times N$ Hermitian positive semidefinite matrix with trace equal to 1 . If a quantum system in state ρ is measured in the standard basis, the result is $|i\rangle$ with probability $(\rho)_{i i}$; if a unitary transformation U is applied to the system, then the density matrix of the transformed system is $U \rho U^{-1}$. Given two $N \times N$ density matrices ρ and σ, their trace distance is defined to be

$$
\|\rho-\sigma\|_{\mathrm{tr}}=\frac{1}{2} \sup _{U} \operatorname{tr}\left|U \rho U^{-1}-U \sigma U^{-1}\right|,
$$

where the supremum is over all $N \times N$ unitary matrices U and the absolute value of a matrix is taken entrywise. Trace distance is a measure of the distance between two quantum states.
(a) Show that $0 \leq\|\rho-\sigma\|_{\text {tr }} \leq 1$ for all quantum states ρ and σ.
(b) Show that if a measurement accepts the state ρ with probability p and accepts the state σ with probability q, then $|p-q| \leq\|\rho-\sigma\|_{\text {tr }}$.
(c) Show that for pure states, trace distance is related to inner product via the following formula: $\|(|\psi\rangle\langle\psi|-|\varphi\rangle\langle\varphi|)\|_{\text {tr }}=\sqrt{1-|\langle\psi \mid \varphi\rangle|^{2}}$.
(d) Combining (b.) and (c.), show that the measurement you designed in problem 1 was the optimal one. That is, any measurement either mistakes $|\psi\rangle$ for $|\varphi\rangle$ or vice versa with probability at least $\frac{1}{2}-\frac{1}{2} \sqrt{1-|\langle\psi \mid \varphi\rangle|^{2}}$.
3. Density matrices and quantum algorithms. Let $f:\{1, \ldots, N\} \rightarrow\{0,1\}$ be a Boolean function. Consider a quantum algorithm that first prepares an equal superposition over all inputs $x \in\{1, \ldots, N\}$, then computes f in superposition, then runs the f algorithm backwards to uncompute garbage. This algorithm proceeds through the following three states:

$$
\left.\left.\frac{1}{\sqrt{N}} \sum_{x=1}^{N}|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{x=1}^{N}|x\rangle \right\rvert\, \text { garbage }_{x}\right\rangle|f(x)\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{x=1}^{N}|x\rangle|f(x)\rangle
$$

Describe the density matrix of the $|x\rangle$ register only for each of these three states. [Here you can assume the map $x \rightarrow$ garbage $_{x}$ is injective. You can also fix a particular f for definiteness: for example, $f(x)=1$ if $x \geq N / 2$ and $f(x)=0$ otherwise.]
4. Errors in a quantum computation build up linearly rather than exponentially.
(a) Show that trace distance (defined in problem 2) satisfies the triangle inequality:

$$
\|\rho-\xi\|_{\mathrm{tr}} \leq\|\rho-\sigma\|_{\mathrm{tr}}+\|\sigma-\xi\|_{\mathrm{tr}}
$$

(b) Let U_{1}, \ldots, U_{T} be "ideal" unitary matrices, and let V_{t} be a noisy approximation to U_{t} that our quantum computer actually implements. Suppose $\left\|U_{t} \rho U_{t}^{\dagger}-V_{t} \rho V_{t}^{\dagger}\right\|_{\mathrm{tr}} \leq \varepsilon$ for all mixed states ρ and all t. Show that for all ρ,

$$
\left\|U_{T} \cdots U_{1} \rho U_{1}^{\dagger} \cdots U_{T}^{\dagger}-V_{T} \cdots V_{1} \rho V_{1}^{\dagger} \cdots V_{T}^{\dagger}\right\|_{\mathrm{tr}} \leq \varepsilon T
$$

[Hint: This doesn't follow directly from part (a.) - do you see why not? - though you'll certainly want to use part (a.)]
5. Uniformity. Recall the definition of BQP as the class of languages $L \subseteq\{0,1\}^{*}$ decidable with bounded probability of error by a uniform family $\left\{C_{n}\right\}_{n \geq 1}$ of polynomial-size quantum circuits. Here uniform means there exists a deterministic (classical) algorithm that, given n as input, outputs a description of C_{n} in time polynomial in n. Show that we get the same complexity class, if we instead allow a BQP algorithm to output C_{n} (or more precisely, a probability distribution over C_{n} 's).
6. Complete problems. For our purposes, say a problem B is complete for the complexity class \mathcal{C} if (i) B is in \mathcal{C}, and (ii) every problem in \mathcal{C} can be reduced to B in deterministic polynomial time (i.e., $\left.\mathcal{C} \subseteq \mathrm{P}^{B}\right)$.
(a) Let PromiseBQP be the class of promise problems efficiently solvable by a quantum computer: that is, the set of all ordered pairs $\Pi_{Y E S} \subseteq\{0,1\}^{*}, \Pi_{N O} \subseteq\{0,1\}^{*}$ such that

- $\Pi_{Y E S} \cap \Pi_{N O}=\varnothing$, and
- there exists a uniform family of polynomial-size quantum circuits that decides, given an input x, whether $x \in \Pi_{Y E S}$ or $x \in \Pi_{N O}$ with bounded probability of error, promised that one of these is the case.

Give an example of a promise problem that's complete for PromiseBQP. [Hint: This problem just requires understanding the definitions; it does not require cleverness.]
(b) Explain the basic difficulty in finding a language $L \subseteq\{0,1\}^{*}$ that is complete for BQP.
7. Improved upper bound on BQP. Probabilistic Polynomial-Time, or PP, is defined as the class of languages $L \subseteq\{0,1\}^{*}$ for which there exists a probabilistic Turing machine M such that for all inputs x :

- If $x \in L$ then $M(x)$ accepts with probability $\geq 1 / 2$.
- If $x \notin L$ then $M(x)$ accepts with probability $<1 / 2$.

It is clear that $\mathrm{BPP} \subseteq \mathrm{PP} \subseteq \mathrm{P}^{\# P}$. Show that $\mathrm{BQP} \subseteq \mathrm{PP}$, thereby improving the result from class that $\mathrm{BQP} \subseteq \mathrm{P} \# \mathrm{P}$. [Hint: First show how to write the acceptance probability p_{C} of a quantum circuit C as the sum of exponentially many complex numbers, each computable in polynomial time. Then show how this implies the existence of a PP machine to decide whether $p_{C} \geq 1 / 2$.]
8. Equivalence of two types of quantum queries. In class, we saw two types of quantum queries. Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, a phase query maps each basis state $|x, a, z\rangle$ to $(-1)^{a \cdot f(x)}|x, a, z\rangle$, where a is a "control qubit" that is set to 1 if and only if the query should happen. A XOR query maps each basis state $|x, a, z\rangle$ to $|x, a \oplus f(x), z\rangle$, where a is a 1-qubit "answer register".
(a) Show how to simulate a phase query to f using a single XOR query. [Hint: What happens when you Hadamard a before querying?]
(b) Show how to simulate a XOR query to f using a single phase query.
9. Reals vs. complex amplitudes. Show that any quantum computation involving complex amplitudes, can be polynomially simulated by another quantum computation involving real amplitudes only. [Hint: Double the number of basis states.]
10. Number of quantum states. Let H_{N} be the set of pure quantum states over the basis $|1\rangle, \ldots,|N\rangle$ (in other words, unit vectors in \mathbb{C}^{N}). Also, fix a constant $c>0$.
(a) Show that one can find $T=2^{\Omega(N)}$ states $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{T}\right\rangle$ in H_{N}, such that $\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right| \leq c$ for all $i \neq j$. [Hint: It suffices to restrict attention to states of the form $\frac{1}{\sqrt{N}} \sum_{i=1}^{N}(-1)^{x_{i}}|i\rangle$. Do you see a connection to error-correcting codes?]
(b) Let G be a finite, universal set of quantum gates. Using part (a.), show that there exist quantum states $|\psi\rangle$ of n qubits that require $2^{\Omega(n))}$ gates from G to prepare even approximately. In other words, the exponential dependence on n in the Solovay-Kitaev Theorem is necessary.
(c) [Extra credit] Show that when c is close to 1 , the bound from part a. can be sharpened to $T \geq\left(\frac{1}{1-c}\right)^{\Omega(N)}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.845 Quantum Complexity Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

