6.845 Problem Set 2: Basic Training for the **BQP** Army

Do any 7 of the 10 problems—the remaining 3 are extra credit.

1. Distinguishing two quantum states.

- (a) Show that there exists a measurement that, given as input either $|\psi\rangle = a|0\rangle + b|1\rangle$ or $|\varphi\rangle = a|0\rangle b|1\rangle$, for some real numbers a, b with $a^2 + b^2 = 1$, correctly identifies which state it was given with probability $\frac{1}{2}(a+b)^2$.
- (b) Given two pure quantum states $|\psi\rangle = \alpha_1 |1\rangle + \cdots + \alpha_N |N\rangle$ and $|\varphi\rangle = \beta_1 |1\rangle + \cdots + \beta_N |N\rangle$, recall that their *inner product* is

$$\langle \psi | \varphi \rangle = \alpha_1^* \beta_1 + \dots + \alpha_N^* \beta_N.$$

Show that unitary transformations preserve inner product: that is, if $|\psi'\rangle = U|\psi\rangle$ and $|\varphi'\rangle = U|\varphi\rangle$, then $\langle \psi'|\varphi'\rangle = \langle \psi|\varphi\rangle$.

- (c) Show that there exists a measurement that, given as input either $|\psi\rangle$ or $|\varphi\rangle$ each with probability $\frac{1}{2}$, correctly identifies which state it was given with probability $\frac{1}{2} + \frac{1}{2}\sqrt{1 |\langle\psi|\varphi\rangle|^2}$. [*Hint:* Use symmetry to reduce to part (a.).]
- 2. Trace distance. Recall the formalism of *density matrices* from pset1. A density matrix ρ is an $N \times N$ Hermitian positive semidefinite matrix with trace equal to 1. If a quantum system in state ρ is measured in the standard basis, the result is $|i\rangle$ with probability $(\rho)_{ii}$; if a unitary transformation U is applied to the system, then the density matrix of the transformed system is $U\rho U^{-1}$. Given two $N \times N$ density matrices ρ and σ , their *trace distance* is defined to be

$$\|\rho - \sigma\|_{\mathrm{tr}} = \frac{1}{2} \sup_{U} \mathrm{tr} |U\rho U^{-1} - U\sigma U^{-1}|,$$

where the supremum is over all $N \times N$ unitary matrices U and the absolute value of a matrix is taken entrywise. Trace distance is a measure of the distance between two quantum states.

- (a) Show that $0 \le \|\rho \sigma\|_{tr} \le 1$ for all quantum states ρ and σ .
- (b) Show that if a measurement accepts the state ρ with probability p and accepts the state σ with probability q, then $|p-q| \leq ||\rho \sigma||_{\text{tr}}$.
- (c) Show that for pure states, trace distance is related to inner product via the following formula: $\|(|\psi\rangle\langle\psi| - |\varphi\rangle\langle\varphi|)\|_{\rm tr} = \sqrt{1 - |\langle\psi|\varphi\rangle|^2}.$
- (d) Combining (b.) and (c.), show that the measurement you designed in problem 1 was the optimal one. That is, any measurement either mistakes $|\psi\rangle$ for $|\varphi\rangle$ or vice versa with probability at least $\frac{1}{2} \frac{1}{2}\sqrt{1 |\langle\psi|\varphi\rangle|^2}$.

3. Density matrices and quantum algorithms. Let $f : \{1, ..., N\} \rightarrow \{0, 1\}$ be a Boolean function. Consider a quantum algorithm that first prepares an equal superposition over all inputs $x \in \{1, ..., N\}$, then computes f in superposition, then runs the f algorithm backwards to uncompute garbage. This algorithm proceeds through the following three states:

$$\frac{1}{\sqrt{N}}\sum_{x=1}^{N} |x\rangle \rightarrow \frac{1}{\sqrt{N}}\sum_{x=1}^{N} |x\rangle |\text{garbage}_{x}\rangle |f(x)\rangle \rightarrow \frac{1}{\sqrt{N}}\sum_{x=1}^{N} |x\rangle |f(x)\rangle.$$

Describe the density matrix of the $|x\rangle$ register only for each of these three states. [Here you can assume the map $x \to \text{garbage}_x$ is injective. You can also fix a particular f for definiteness: for example, f(x) = 1 if $x \ge N/2$ and f(x) = 0 otherwise.]

4. Errors in a quantum computation build up linearly rather than exponentially.

(a) Show that trace distance (defined in problem 2) satisfies the triangle inequality:

$$\left\|\rho - \xi\right\|_{\mathrm{tr}} \le \left\|\rho - \sigma\right\|_{\mathrm{tr}} + \left\|\sigma - \xi\right\|_{\mathrm{tr}}$$

(b) Let U_1, \ldots, U_T be "ideal" unitary matrices, and let V_t be a noisy approximation to U_t that our quantum computer actually implements. Suppose $\left\| U_t \rho U_t^{\dagger} - V_t \rho V_t^{\dagger} \right\|_{\mathrm{tr}} \leq \varepsilon$ for all mixed states ρ and all t. Show that for all ρ ,

$$\left\| U_T \cdots U_1 \rho U_1^{\dagger} \cdots U_T^{\dagger} - V_T \cdots V_1 \rho V_1^{\dagger} \cdots V_T^{\dagger} \right\|_{\mathrm{tr}} \leq \varepsilon T.$$

[*Hint:* This doesn't follow *directly* from part (a.) - do you see why not? - though you'll certainly want to use part (a.)]

- 5. Uniformity. Recall the definition of BQP as the class of languages $L \subseteq \{0, 1\}^*$ decidable with bounded probability of error by a uniform family $\{C_n\}_{n\geq 1}$ of polynomial-size quantum circuits. Here uniform means there exists a deterministic (classical) algorithm that, given n as input, outputs a description of C_n in time polynomial in n. Show that we get the same complexity class, if we instead allow a BQP algorithm to output C_n (or more precisely, a probability distribution over C_n 's).
- 6. Complete problems. For our purposes, say a problem *B* is *complete* for the complexity class C if (i) *B* is in C, and (ii) every problem in C can be reduced to *B* in deterministic polynomial time (i.e., $C \subseteq \mathsf{P}^B$).
 - (a) Let PromiseBQP be the class of *promise problems* efficiently solvable by a quantum computer: that is, the set of all ordered pairs $\Pi_{YES} \subseteq \{0,1\}^*$, $\Pi_{NO} \subseteq \{0,1\}^*$ such that
 - $\Pi_{YES} \cap \Pi_{NO} = \emptyset$, and
 - there exists a uniform family of polynomial-size quantum circuits that decides, given an input x, whether $x \in \Pi_{YES}$ or $x \in \Pi_{NO}$ with bounded probability of error, promised that one of these is the case.

Give an example of a promise problem that's complete for PromiseBQP. [*Hint:* This problem just requires understanding the definitions; it does not require cleverness.]

(b) Explain the basic difficulty in finding a language $L \subseteq \{0,1\}^*$ that is complete for BQP.

- 7. Improved upper bound on BQP. Probabilistic Polynomial-Time, or PP, is defined as the class of languages $L \subseteq \{0,1\}^*$ for which there exists a probabilistic Turing machine M such that for all inputs x:
 - If $x \in L$ then M(x) accepts with probability $\geq 1/2$.
 - If $x \notin L$ then M(x) accepts with probability < 1/2.

It is clear that $\mathsf{BPP} \subseteq \mathsf{PP} \subseteq \mathsf{P}^{\#\mathsf{P}}$. Show that $\mathsf{BQP} \subseteq \mathsf{PP}$, thereby improving the result from class that $\mathsf{BQP} \subseteq \mathsf{P}^{\#\mathsf{P}}$. [*Hint:* First show how to write the acceptance probability p_C of a quantum circuit C as the sum of exponentially many complex numbers, each computable in polynomial time. Then show how this implies the existence of a PP machine to decide whether $p_C \geq 1/2$.]

- 8. Equivalence of two types of quantum queries. In class, we saw two types of quantum queries. Given a Boolean function $f : \{0,1\}^n \to \{0,1\}$, a *phase query* maps each basis state $|x,a,z\rangle$ to $(-1)^{a \cdot f(x)}|x,a,z\rangle$, where a is a "control qubit" that is set to 1 if and only if the query should happen. A XOR query maps each basis state $|x,a,z\rangle$ to $|x,a \oplus f(x),z\rangle$, where a is a 1-qubit "answer register".
 - (a) Show how to simulate a phase query to f using a single XOR query. [*Hint:* What happens when you Hadamard a before querying?]
 - (b) Show how to simulate a XOR query to f using a single phase query.
- Reals vs. complex amplitudes. Show that any quantum computation involving complex amplitudes, can be polynomially simulated by another quantum computation involving real amplitudes only. [*Hint:* Double the number of basis states.]
- 10. Number of quantum states. Let H_N be the set of pure quantum states over the basis $|1\rangle, \ldots, |N\rangle$ (in other words, unit vectors in \mathbb{C}^N). Also, fix a constant c > 0.
 - (a) Show that one can find $T = 2^{\Omega(N)}$ states $|\psi_1\rangle, \ldots, |\psi_T\rangle$ in H_N , such that $|\langle \psi_i | \psi_j \rangle| \leq c$ for all $i \neq j$. [*Hint:* It suffices to restrict attention to states of the form $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-1)^{x_i} |i\rangle$. Do you see a connection to error-correcting codes?]
 - (b) Let G be a finite, universal set of quantum gates. Using part (a.), show that there exist quantum states $|\psi\rangle$ of n qubits that require $2^{\Omega(n)}$ gates from G to prepare even approximately. In other words, the exponential dependence on n in the Solovay-Kitaev Theorem is necessary.
 - (c) [Extra credit] Show that when c is close to 1, the bound from part a. can be sharpened to $T \ge \left(\frac{1}{1-c}\right)^{\Omega(N)}$.

6.845 Quantum Complexity Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.