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6.896 Quantum Complexity Theory	 2 December 2008 

Lecture 23 
Lecturer: Scott Aaronson 

Last time, 

1.	 2-way communication: exponential separation for promise problem (Raz), quadratic sep
aration for total function, unknown if there’s an exponential separation for total function. 

2.	 1-way communication: exponential separation for promise problem, unknown if there’s 
any asymptotic separation for total function. Problem that I conjecture gives a quadratic 
separation: group membership. 

In our last class, we considered some examples of separations in quantum one-way and two-way 
communication. We don’t know any total function for which we can prove that quantum one-way 
communication gives you any asymptotic advantage over classical one-way communication. We 
do have a candidate for such a problem: group membership. Suppose that there is some finite 
group G that is known to both Alice and Bob. Alice has a subgroup H ≤ G and Bob has some 
element x ∈ G. Alice can send a message MH to Bob that encodes information about H. To 
specify any subgroup, she requires log2 N bits, where N is the order of the group, but only log N 
qubits. The open problem here is to prove that any classical communication protocol only requires 
log2 N bits. Note that if G is Abelian, then there is no separation between classical and quantum 
communication in this problem. If such a separation were to exist, then G would have to be badly 
non-Abelian. 

Classical Simulations of Quantum Circuits and Stabilizers Cir
cuits 

It turns out that quantum circuits that can be efficiently simulated classically: not quite a unified 
field, but rather a collection of interesting ideas that people have had. Two reasons I like this area: 

Unlike almost everything else in this course, it actually has some practical applications today! • 
Physicists and chemists care about these sorts of things, particularly density functional theory. 

Illustrates the subtlety of quantum speedups. • 

It seems that almost all sets of gate we choose are universal, however, this is not necessarily 
true. We’ll start off by considering stabilizer circuits and the Gottesmann-Knill theorem. 

Theorem 1 (Gottesmann-Knill) Any circuit composed of CNOT, Hadamard and phase gates 
can be efficiently simulated on a classical computereven though such circuits can generate huge 
amounts of entanglement, and can be used for superdense coding, quantum teleportation, the GHZ 
paradox, quantum error-correcting codes, etc. 

23-1 



� � � � � � � � 

The idea here is that we can specify a quantum state |ψ� by listing a bunch of unitary matrices 
that stabilize |ψ�, i.e., such that U |ψ� = |ψ�. Note that if U and V stabilize |ψ�, then UV and 
U−1 also stabilize |ψ�. Thus, the set of stabilizers of |ψ� forms a group, called the stabilizer group. 
We’re going to specify a state by giving a set of generators for its stabilizer group. If we start with 
some initial computational basis state |00�, then the actions of the stabilizers gates are: 

|00� → |00� + |10� 
→ |00� + |11� 
→ |00� + i |11� (1) 

for a Hadamard, CNOT, and phase gate, respectively. You’ll notice that we can only produce equal 
superpositions over some affine subspace using these gates. 

If a state can be generated (starting from |00 . . . 00�) by CNOT, Hadamard, and phase gates, it 
turns out that its stabilizer group consists of particularly simple unitaries: namely, tensor products 
of Pauli matrices: 

I = 
1
0 

0
1 

X = 
0
1 

1
0 

Y =
0 
i 
−
0 
i

Z = 
1
0 −

0
1 

(2) 

The squares of these matrices resolve the identity 

X2 = Y 2 = Z2 = I, (3) 

and their products are closed under cyclic permutation 

XY = iZ = −Y X 

Y Z = iX = −ZY 

ZX = iY = −XZ. (4) 

They behave exactly as quarternions, in case you’ve seen those. 
As an example, let’s look at the two-state computational basis. Their stabilizers are given by: 

Gate Stabilizer Set 
0� {I, Z}|
1� {I, −Z}|
√1

2 
(|0� ± |1�) {I, ±X} 

√1
2 
(|0� ± i |1�) {I, ±Y } 

The two-qubit initial state is stabilized by {ZZ, IZ,ZI, II}, so it’s stabilizers representation is 
{ZI, IZ}. In our classical simulation of a quantum circuit, this list of generators is going to be our 
succinct representation of the quantum state. How many bits does that representation require, for 
an n-qubit state? Well, each Pauli matrix takes 2 bits, so each generator requires 2n bitsactually 
2n + 1, since there might be a minus sign in front. And it turns out we always have exactly n 
generators (yielding a stabilizer group of order 2n). So, n (2n + 1) bits total. 

The key question, of course, is how to update this representation when a CNOT, Hadamard, 
or phase gate is applied. Rather than prove rigorously what happens, I’ll just illustrate the rules 
through examples. Let’s apply these gates to an initial tensor product state |00� and see what 
happens, 
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Gate Stabilizer Generators

00� {IZ, ZI}|
1 ( {XI, IZ}√
1√

0� + |1�) |0� 
0� + i

|

2 
(
 |1�) |0� {Y I, ±IZ} 

|1�) |0� {−XI, ±IZ} 
|


2 
1
2

√ (
|
0� − i


In general, after Hadamarding the ith qubit, we go through the ith column of the matrix swapping 
X’s with Z’s, and Y ’s with Y ’s. For the phase gate, go through the ith column mapping X to Y 
to X to Y . For the CNOT gate, XI XX, IX IX, ZI ZI, and IZ ZZ. From these → → → →
rules, we can show that Y I Y X.→

One thing I haven’t told you is how to handle measurement. Given a stabilizer state, every 
measurement of a qubit in the standard basis returns the outcome |1� with probability either 0, 
1, or 1/2. Our task is to figure out which. Well, if the ith row contains an X or Y , then the 
probability is going to be 1/2. Why? Because if the ith qubit were either definitely |0� or definitely 
|1�, it couldn’t possibly be stabilized by X or Z. If the ith row contains only I’s and Z’s, then 
the probability is going to be either 0 or 1. Why? Because in that case, one can prove that either 
IIZII or IIZII (i.e., a Z at the ith qubit and I’s everywhere else) must be in the stabilizer group. 
If IIZII stabilizes the state, then the measurement outcome has to be |0�, while if IIZII stabilizes 
it, then the measurement outcome has to be |1�. So we just have to figure out which. But this is 
a linear algebra problem, which is solvable in polynomial time using Gaussian elimination! Total 
running time: O (n) per CNOT, Hadamard, phase gate, O n3 to simulate a measurement. 

In 2004, I decided to implement the Gottesman-Knill simulation algorithm for a course project, 
but I didn’t feel like implementing Gaussian elimination. So Gottesman and I developed a better 
algorithm, which uses only O n2 time to simulate a measurement. We also proved that the 
problem of simulating a stabilizer circuit is complete for the class ⊕L, a subclass of P (under L-
reductions). To put it another way, stabilizer circuits have exactly the same computational power as 
circuits with CNOT gates only. So they’re presumably not even universal for classical computation. 

Match Gates 

For a given n × n matrix A, we can define the permanent and the determinant, 
n n

per (A) = aiσ(i) ←→ det (A) = (−1)sign(σ) aiσ(i). (5) 
σ i=1 σ i=1 

Theorem 2 (Valiant) Permanent is #P -complete. 

Since BQP⊆P#P, this means in particular that the problem of simulating a quantum computer 
can always be reduced to computing the Permanent of some matrix. Well, but that doesn’t help 
much, since the Permanent is #P-complete! As we know, determinant is computable in classical 
polynomial time (using Gaussian elimination). 

So, if only there were some interesting subclass of quantum computations that reduced to 
the determinant instead of the permanent! Indeed there is such a subclass—Valiant called them 
matchcircuits, and wrote a paper developing the theory of them purely mathematically. Then 
something funny happened: Terhal and DiVincenzo wrote a follow-up paper pointing out that 
what Valiant had essentially done is rediscovered fermions. 
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So far in this course, we haven’t had to say anything about particles, but it turns out that 
particles come in two types: bosons and fermions. Bosons are generally force particles like photons; 
fermions are generally matter particles like quarks. Mathematically, the crucial difference between 
them has to do with how you add up amplitudes. Let’s say we have 2 identical particles that don’t 
interact with each other, and we just want to know the amplitude for them evolving into some new 
configuration. How can we calculate that configuration? Well, we can take the amplitude for this 
particle going here multiplied by the amplitude for that particle going there. What else do we need 
to consider? Right: the cross term. So we get ab + cd. Seems obvious! And indeed, that’s exactly 
what happens with bosons. 

But there’s another possibility, which is realized by fermions: that we have to take ab − cd. 
(You might wonder, why not cd − ab? Well, we can only determine the amplitude up to a sign, but 
amplitudes are only ever determined up to a sign anyhow!) In general, suppose we have n identical, 
non-interacting particles, and let aij be the amplitude for particle i going to position j. Form the 
matrix A = (aij ). Then if the particles are bosons, the amplitude for this whole process is per (A), 
while if they’re fermions, the amplitude for this whole process is det (A). 

The Future 

Open problems! 
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