
6.851: Advanced Data Structures Spring 2012

Lecture 14 — April 10, 2012
Prof. Erik Demaine

1 Overview

Today we are going to go over:

• The reduction between sorting and priority queues
• A survey of sorts
• Bitonic Sequences
• Logarithmic Merge Operation
• Packed Sorting
• Signature Sort Algorithm

The reduction and survey will serve as motivation for signature sort. Bitonic Sequences will be
used to build Logarithmic Merge which will in turn be used to build Packed Sorting which will in
finally be used to build Signature Sort.

2 Sorting reduced to Priority Queues

Thorup [7] showed that if we can sort n w-bit integers in O(nS(n, w)), then we have a priority
queue that can support the insertion, deletion, and find minimum operations in O(S(n, w)). To
get a constant time priority queue, we need linear time sorting.
OPEN: linear time sorting

3 Sorting reduced to Priority Queues

Following is a list of results outlining the current progress on this problem.

• Comparison model: O(n lg n)

• Counting sort: O(n + 2w)

w• Radix sort: O(n ·)lg n

1

w• van Emde Boas: O(n lg w), improved to O(n lg) (see [6]). lg n

• Signature sort: linear when w = o(lg2+c n) (see [2]).

• Han [4]: O(n lg lg n) deterministic, AC0 RAM. √≥ w• Han and Thorup: O(n lg lg n) randomized, improved to O(n lg) (see [5] and [6])). lg n

Today, we will focus entirely on the details of the signature sort. This algorithm works whenever
w = o(log2+c n). Radix sort, which we should already know, works for smaller values of w,
namely when w = O(log n). For all other values of w and n, it is open whether we can sort in
linear time. We previously covered the van Emde Boas tree, which allows for O(n log log n) sorting
whenever w = logO(1) n. The best we have done in the general case is a randomized algorithm in √

wO(n log) time by Han, Thorup, Kirkpatrick, and Reisch. log n

OPEN: O(n) time sort ≤w

4 Sorting for w = D(log2+c n)

The signature sort was developed in 1998 by Andersson, Hagerup, Nilsson, and Raman [2]. It sorts
n w-bit integers in O(n) time when w = o(log2+c n) for some c > 0. This is a pretty complicated
sort, so we will build the algorithm from the ground up. First, we give an algorithm for sorting
bitonic sequences using methods from parallel computing. Second, we show how to merge two
words of k : log n log log n elements in O(log k) time. Third, using this merge algorithm, we create
a variant of mergesort called packed sorting, which sorts n b-bit integers in O(n) time when
w 2 2(b + 1) log n log log n. Fourth, we use our packed sorting algorithm to build signature sort.

4.1 Bitonic Sequences

A bitonic sequence is a cyclic shift of a monotonically increasing sequence followed by a monotoni
cally decreasing sequence. When examined cyclically, it has only one local minimum and one local
maximum.

Cyclic shifts preserve the binoticity of a sequence.

To sort a bitonic sequence btcseq, we run the algorithm shown below in the figure below. Assume
n = len(btcseq) is even.

Bitonic sequence sorting maintains two invariants: (a) the sequence btcseq contains multiple
sections of bitonic sequences (each level of btcsort splits a bitonic sequence into two bitonic
sequences), and (b) when considering two sections of bitonic sequences, an element in the left
section is always smaller than an element in the right section.

2

Algorithm 1 Bitonic sequence sorting algorithm

btcsort(btcseq):

for i from 0 to n/2-1:
if btcseq[i]>btcseq[i+n/2]:

swap(btcseq[i], btcseq[i+n/2])
btcsort(btcseq[0:n/2-1])
btcsort(btcseq[n/2:n-1])

After O(log n) rounds, btcseq is broken into n sections. Since the left section has elements smaller
than the right section, sorting is complete.

For more information about sorting bitonic sequences, including a proof of the correctness of this
algorithm, see [3, Section 27.3].

4.2 Logarithmic Merge Operation

The next step is to merge two sorted words, each containing k b-bit elements. First, we concatenate
the first word with the reverse of the second word, getting a bitonic sequence. To efficiently reverse
a
 word, we mask out the leftmost
 k

2 elements and shift them right by
 k
2b, then mask out the

rightmost
 k
2 elements and shift them left by
 k

2b. Taking the OR of the two resulting words leaves us

with the original word with the left and right halves swapped. We can now recurse on the left and

right halves of the word, giving us the recursion T (n) = T (
2

k)+ O(1), so the whole algorithm takes

T (k) = O(log k) time. The two words may now be concatenated by shifting the first word left by
kb and taking its OR with the second word. The key here is to perform each level of the recursion
in parallel, so that each level takes the same amount of time. This list reversal is illustrated in the
figure below.

The first two steps in the recursion for reversing a list.

All that remains is to run the bitonic sorting algorithm on the elements in our new word. To do so,
we must divide the elements in two halves and swap corresponding pairs of elements which are out
of order. Then we can recurse on the first and second halves in parallel, once again giving us the
recursion T (k) = 2T (
2

k) + O(1) : T (k) = O(log k) time. Thus we need a constant-time operation

which will perform the desired swapping.

Assume we have an extra 0 bit before each element packed into the word. We use this spare bit to
help bitmask our word. We will mask the left half of the elements and set this extra bit to 1 for

3

each element, then mask the right half of the elements and shift them left by k b. After we subtract 2
the second word from the first, a 1 will appear in the extra bit iff the element in the corresponding
position of the left half is greater than the element in the right half. Thus we can mask the extra
bits, shift the word right by b − 1 bits, and subtract it from itself, resulting in a word which will
mask all the elements of the right half which belong in the left half and vice versa. From this, we
use bit shifts, OR, and negation to get our sorted list. See the diagram below for clarification; the
process is fairly straightforward.

Parallel swap operation in bitonic sorting.

Using these bit tricks, we end up with our desired constant time all-swap operation. This leads to
the following theorem:

Theorem 1. Suppose two words each contain k b-bit elements. Then we can merge these words in
O(log k) time.

Proof. As already noted, we can concatenate the first word with the reverse of the second word
in O(log k) time. We can then apply the bitonic sorting algorithm to these concatenated words.
Since this algorithm has a recursion depth of O(log k), and we can perform the required swaps in
constant time, our merge operation ends up with time complexity O(log k).

4.3 Packed Sorting

In this section we will present packed sorting [1], which sorts n b-bit integers in O(n) time for a
word size of w 2 2(b + 1) log n log log n. This bound for w allows us to pack k = log n log log n

4

elements into one word, leaving a zero bit in front of each integer, and
 w
2 zero bits at the beginning

of the word.

Structure for packing b-bit integers into a w-bit word.

To sort these elements using packed sorting, we build up merge operations as follows:

1. Merge two sorted words in O(lg k) time, as shown with bitonic sorting in the previous section.

2. Merge sort on k elements with (1) as the merge operation. This sort has the recursion
T (k) = 2T (
k

2) + O(lg k) : T (k) = O(k).

3. Merge two sorted lists of	 r sorted words into one sorted list of 2r sorted words. This is
done in the same manner as in a standard merge sort, except we use (1) to speed up the
operation. We start by merging the left-most words in the two lists using (1). The first word
following this merger must consist of the smallest k elements overall, so we output this word.
However, we cannot be sure about the relative position of the elements in the second word.
We therefore examine the maximum element in the second word, and add the second word to
the beginning of the list which contained this maximum element. We continue merging the
lists in this manner, resulting in O(r log k) overall.

4. Merge sort all of the words with (3) as the merge operation and (2) as the base case.

Theorem 2. Let word size w 2 2(b + 1) log n log log n. Then packed sorting sorts n b-bit integers
in O(n) time.

Proof. The sort defined in Step 4 of the algorithm above has the recursion T (n) = 2T (
n
2)+O(
k

n log k)

and the base case T (k) = O(k). The recursion depth is O(log
n

k), and each level takes O(
n
k lg k) =

O(
 n
lg n) time, so altogether they contribute a cost of O(n). There are also
 k

n base cases, each taking

O(k) time, giving a total runtime of O(n), as desired.

4.4 Signature Sort Algorithm

We use our packed sorting algorithm to build our seven step signature sort. We assume that
w 2 log2+c n log log n. The signature sort will sort n w-bit integers in O(n) time. We will start
by breaking each integer into lgc n equal-size chunks, which will then be replaced by O(lg n)-bit
signatures via hashing. These smaller signatures can be sorted with packed sorting in linear time.
Because hashing does not preserve order, we will build a compressed trie of these sorted signatures,
which we will then sort according to the values of the original chunks. This will allow us to recover
the sorted order of the integers. The signature sort will proceed as follows:

1. Break each integer into lgc n equal-size chunks. (Note the distinguishment from a fusion tree,
which has chunks of size lgc n)

5

2. Replace each chunk by a O(lg n)-bit hash (static perfect hashing is fine). By doing this, we
end up with n O(lg1+c n)-bit signatures. One way we can hash is to multiply by some random
value x, and then mask out the hash keys. This will allow us to hash in linear time. Now,
our hash does not preserve order, but the important thing is that it does preserve identity.

3. Sort the signatures in linear time with packed sorting, shown above.

4. Now we want to rescue the identities of the signatures.	 Build a compressed trie over the
signatures, so that an inorder traversal of the trie gives us our signatures in sorted order. The
compressed trie only uses O(n) space.

A trie for storing signatures. Edge represent hash values of chunks; leaves represent possible
signature values.

To do this in linear time, we add the signatures in order from left to right. Since we are in the
word RAM, we can compute the LCP with (i − 1)st signature by taking the most significant
1 bit of the XOR. Then, we walk up the tree to the appropriate node, and charge the walk
to the decrease in the rightmost path length of the trie. The creation of the new branch
is constant time, so we get linear time overall. This process is similar to the creation of a
Cartesian tree.

5. Recursively sort the edges of each node in the trie based on their actual values. This is a re-
wcursion on (node ID, actual chunk, edge index), which takes up (O(log n), O(E), O(log n))log n

space. The edge indices are in there to keep track of the permutation. After a constant 1 +1 c
w wlevels of recursion, we will have b = O(log n +) = O(), so we can use packed

log1+E n log n log log n

sorting as the base case of the recursion.

6. Permute the child edges.

7. Do an inorder traversal of the trie to get the desired sorted list from the leaves.

Putting these steps together, we get:

Theorem 3. Let w 2 log2+c n log log n. Then signature sort will sort n w-bit integers in O(n)
time.

Proof. Breaking the integers into chunks and hashing them (Steps 1 and 2) takes linear time. Sort
ing these hashed chunks using packed sort (Step 3) also takes linear time. Building the compressed
trie over signatures takes linear time (Step 4), and sorting the edges of each node (Step 5) takes
constant time per node for a linear number of nodes. Finally, scanning and permuting the nodes
(Step 6) and the in-order traversal of the leaves of the trie (Step 7) will each take linear time,
completing the proof.

6

References

[1] Susanne Albers, Torben Hagerup:	 Improved Parallel Integer Sorting without Concurrent Writ
ing, Inf. Comput. 136(1): 25-51, 1997.

[2] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in Linear Time?, J. Comput. Syst.
Sci. 57(1): 74-93, 1998.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein:	 Introduction to Algorithms, Second Edi
tion, The MIT Press and McGraw-Hill Book Company 2001.

[4] Y. Han:	 Deterministic Sorting in O(n log log n) Time and Linear Space, J. Algorithms 50(1):
96-105, 2004.

≥
[5] Y. Han, M. Thorup:	 Integer Sorting in O(n log log n) Expected Time and Linear Space, FOCS

2002: 135-144.

[6] D.G. Kirkpatrick, S. Reisch:	 Upper Bounds for Sorting Integers on Random Access Machines,
Theoretical Computer Science 28: 263-276 (1984).

[7] M. Thorup: Equivalence between Priority Queues and Sorting. FOCS 2002: 125-134 (2002).

7

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

