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18.415/6.854 Advanced Algorithms 

Problem Set 3 

If you have any doubt about the collaboration policy, please check the 
course webpage. 

Problem 1. Consider the symmetric traveling salesman path problem. We are 
given a set V of vertices, a (symmetric) distance d(i, j) = d(j, i) ≥ 0 for every pair 
i, j of vertices, 2 special vertices s and t, and we would like to find a path from s to t 
passing through all vertices (a Hamiltonian path) and of minimum total length. This 
problem is NP-hard, and so we will not try to solve it exactly in polynomial time. 

One simple heuristic is known as 2-OPT. Start from any ordering v1 = s, v2, , vn = · · · 
t and remove 2 non-consecutive edges of the Hamiltonian path, say (vi, vi+1) and 
(vj , vj+1) where i +1 < j. Now, there is a unique way to form a new Hamilonian path 
by adding 2 other edges, namely (vi, vj ) and (vi+1, vj+1). If this results in a path of 
shorter length, this so-called 2-swap is performed, and this is repeated until no more 
improvements are possible. 

Now suppose we would like to create a data structure to maintain the ordering 
of the vertices on the path. For any vertex v, we would like to be able to find 
Next(v), the vertex following v on the way to it, and similarly Previous(v), the 
vertex preceding v (i.e. closer to s). The tricky thing is that when we perform a 
2-swap, the vertices vi+1 to vj are now visited in the reverse order (from vi we go 
to vj , then to vj−1 and continue all the way to vi+1, and then continue at vj+1). 
This means we would also like to have an operation Reverse(v, w) that reverses 
the ordering from v to w; in our case above we would perform Reverse(vi+1, vj ). 
If we were maintaining the ordering as a doubly-linked list (with pointers next and 
previous), a Reverse operation would require Θ(n) time in the worst-case. Show 
how to use splay trees to maintain the ordering and perform any sequence of m 
operations (Next, Previous, or Reverse) in O((m + n) log n) time. 

(If you augment the splay tree with additional information at every node, you 
must indicate how this information is maintained while performing operations.) 

Problem 2. In lecture, we argued the static optimality property of splay trees by 
showing that the time T required for a splay tree to access element i mi ≥ 1 times 
for i = 1, , n is within a constant of the time required by any static BST. In this · · · 
problem, you need to argue that this time T for splay trees is 
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where m = i mi is the total number of accesses. 

Problem 3. In the blocking flow problem (which arises in the blocking flow al
gorithm for the maximum flow problem), we are given a directed acyclic graph 
G = (V, E), 2 vertices s and t and capacities on the edges. The goal is to find a 
flow f such that for every path P in E from s to t at least one of the edges of P is 
saturated (i.e. f(v, w) = u(v, w)). 

1. Is the following argument correct? 

A blocking flow f is maximum since, if we take S to be the set of 
vertices reachable from s in (V, E) by non-saturated edges, we get 

¯a cut (S : S) whose value equals the blocking flow, and hence the 
blocking flow must be optimal. 

If the argument is fallacious, show a blocking flow which is not maximum. 

2. Show how to find a blocking flow in a graph G = (V, E) with n vertices and m 
edges in O(m log n) time. (Your solution can be quite short.) 

(FYI, Dinitz showed that one can solve a maximum flow problem in a general directed 
graph by solving at most n blocking flow problems in directed acyclic graphs.) 

Problem 4. A team of n members would like to travel a distance d from A to B 
as quickly as possible. All of them can walk and have also one scooter (which can 
carry only one person at a time) that they can use. For each person i (1 ≤ i ≤ n), we 
know his/her walking speed wi and his/her speed si when travelling on the scooter. 
The goal is to find a way to bring all n people to destination so as to minimize the 
time at which the last person arrives. The scooter can be left by any member of the 
group on the side of the road, and picked up by anyone else of the group. Members 
of the group can also walk or use the scooter backwards (towards A) if that helps. 

1. Consider the case where n = 3, w1 = w2 = 1, s1 = s2 = 6, w3 = 2, s3 = 8 and 
d = 100. Find the fastest way for everyone to travel the distance d. 

2. For a general instance (general n and arbitrary speeds), write a linear program 
whose value is always a lower bound on the time needed for the n-person team 
to travel a distance d. This should be a small linear program; the number 
of variables and constraints should be O(n) (and not dependent on d, or the 
number of ’legs’ of the solution). 

3. Use the linear programming routines in matlab (or any LP software like CPLEX) 
to compute your lower bound for the instance given in 1. (You don’t have to use 
a linear programming software, provided you can exhibit an optimum solution, 
with a proof of optimality.) 
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If the bound you obtain is not equal to the value you found in 1., either improve 
your solution to 1., or find a stronger linear program in 2. 

Matlab is available on athena, see http://web.mit.edu/olh/Matlab/Matlab.html 
for more info. Type help linprog for information on how to use the LP rou
tine. 

Problem 5. We will rederive the max-flow min-cut theorem from linear program
ming duality. Consider the maximum flow problem on a directed graph G = (V, E) 
with source s ∈ V , sink t ∈ V and edge capacities u : E → R. The max-flow problem 
is a linear program: 

max w 

subject to ⎧ � � ⎨ w i = s 
xij − xji = ⎩ 

0 i =� s, t 
j j −w i = t 

xi,j ≤ ui,j (i, j) ∈ E 
0 ≤ xi,j (i, j) ∈ E. 

The variables are the xij ’s (one per edge) and w. 

1. Show that its dual is equivalent to: 

min uijyij 

(i,j)∈E 

subject to

zi − zj + yij ≥ 0 (i, j) ∈ E

zs = 0, zt = 1

yij ≥ 0 (i, j) ∈ E.


2. Given	 a cut (S : S) with s ∈ S and t ∈/ S, show that a feasible solution 
y, z to the dual can be obtained of value equal to the capacity of the cut: 
U(S : S) = (i,j)∈E uij yij . 

3. Given any (not necessarily integral!) optimal solution y∗, z∗ of the dual linear 
program and an optimal solution x∗ of the primal linear program, show how to 
construct from z∗ a cut separating s from t of value equal to the maximum flow. 

This shows the max-flow–min-cut theorem. 

PS3-3



