MIT OpenCourseWare
http://ocw.mit.edu
6.854J / 18.415J Advanced Algorithms

- Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.415/6.854 Advanced Algorithms

Problem Set 5

1. In the bin packing problem, we are given n items, item i being of length a_{i} $\left(0<a_{i} \leq 1\right)$, and we need to find the minimum number of bins of length 1 so that no bin contains items whose total length exceeds 1 . This problem is NP-hard. Consider the following heuristic, called "First Fit" (FF): Consider the items in any order and place each item into the first bin that still has room for it. Let L^{*} denote the minimum number of bins needed and let $L_{F F}$ be the number of bins obtained by using First Fit.
(a) Show that $L_{F F} \leq 2 L^{*}-1$ for any instance.
(b) Show that $L_{F F} \leq \alpha L^{*}+\beta$ for some $\alpha<2$. The best possible answer is $\alpha=1.7$ and $\beta=2$, but this is somewhat tricky to show (or supposedly tricky: you might have an easy argument).
Hint to get $\alpha=1.75$ in case you don't have any other idea. Consider three types of bins in the packing obtained by FF. B_{1} consists of the bins containing items of total length greater than $2 / 3, B_{2}$ consists of the bins not in B_{1} containing one item of length greater than 0.5 (and possibly other items) and B_{3} consists of the remaining bins. Show first that $\left|B_{3}\right| \leq 2$.
2. Consider the following problem. Given a collection \mathcal{F} of subsets of $\{1, \ldots, n\}$ and an integer k, find k sets S_{1}, \ldots, S_{k} in \mathcal{F} such that $\left|S_{1} \cup S_{2} \cup \ldots \cup S_{k}\right|$ is maximum. This problem is NP-hard. The greedy algorithm first chooses S_{1} to be the largest set, and then having constructed S_{1}, \ldots, S_{i-1} chooses S_{i} to be the set that maximizes

$$
\left|S_{i} \backslash \cup_{j=1}^{i-1} S_{j}\right| .
$$

Show that the greedy algorithm is a $1-\left(1-\frac{1}{k}\right)^{k}$-approximation algorithm.
(Hint: You may want to show that, for any j, the union of the first j sets given by the greedy algorithm have a cardinality at least

$$
1-\left(1-\frac{1}{k}\right)^{j} O P T
$$

where $O P T$ denotes the maximum cardinality of the union of k sets.)
3. In MAX 2SAT, we are given a collection C_{1}, \ldots, C_{k} of boolean clauses with at most two literals per clause. Each clause is thus either a literal or the disjunction of two literals drawn from a set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. A literal is either
a variable x or its negation \bar{x}. The goal is to find an assignment of truth values to the variables x_{1}, \ldots, x_{n} that maximizes the number of satisfied clauses.
(a) Show that the algorithm which independently sets every x_{i} to true with probability 0.5 is a randomized 0.5 -approximation algorithm. (As usual, compute the expected number of satisfied clauses.)
(b) Consider the following linear program:

$$
\operatorname{Max} \sum_{j=1}^{k} z_{j}
$$

subject to:

$$
\begin{array}{ll}
\sum_{i \in I_{j}^{+}} y_{i}+\sum_{i \in I_{j}^{-}}\left(1-y_{i}\right) \geq z_{j} & j=1, \ldots, k \tag{LP}\\
0 \leq y_{i} \leq 1 & 1 \leq i \leq n \\
0 \leq z_{j} \leq 1 & j=1, \ldots, k,
\end{array}
$$

where I_{j}^{+}(resp. I_{j}^{-}) denotes the set of variables appearing unnegated (resp. negated) in C_{j}. For example, the clause $x_{3} \vee \bar{x}_{5}$ would give rise to the constraint $y_{3}+1-y_{5} \geq z_{j}$.
i. Show that the optimum value of this linear program is an upper bound on the optimum value of MAX 2SAT.
ii. Let y^{*}, z^{*} denote the optimum solution of this linear program. Show that the algorithm which independently sets every x_{i} to true with probability y_{i}^{*} is a randomized 0.75 -approximation algorithm.
(c) Consider now an approach similar to the one described in class for MAX CUT. Define a unit vector v_{0} corresponding to "true" and also a unit vector v_{i} for each variable x_{i}. Define the "value" of the clause or literal x_{i} as $v\left(x_{i}\right)=\frac{1+v_{0} \cdot v_{i}}{2}$ and the value of \bar{x}_{i} as $v\left(\bar{x}_{i}\right)=\frac{1-v_{0} \cdot v_{i}}{2}$. Observe that $v\left(x_{i}\right)$ is 1 if $v_{0}=v_{i}, 0$ if $v_{0}=-v_{i}$, and between 0 and 1 otherwise. For a clause with two literals, say $C=x_{1} \vee x_{2}$, define $v(C)$ as $\left(3+v_{0} \cdot v_{1}+v_{0} \cdot v_{2}-v_{1} \cdot v_{2}\right) / 4$. The value of other clauses with two literals are similarly defined. Consider now the nonlinear program:
(NLP)

$$
\begin{array}{ll}
\text { Maximize } & \sum_{j=1}^{k} v\left(C_{j}\right) \\
\text { subject to: } & \\
& v_{i} \in S_{n}
\end{array} \quad i=0,1 \ldots, n .
$$

i. Show that the optimum value of this nonlinear program is an upper bound on the optimum value of MAX 2SAT.
ii. Consider the algorithm which first solves this nonlinear program optimally, then generates a uniformly selected point r on the unit sphere S_{n}, and sets x_{i} to be true if $\left(v_{0} \cdot r\right)\left(v_{i} \cdot r\right) \geq 0$. Using the analysis of the MAX CUT algorithm seen in class, show that this algorithm is a randomized 0.878 -approximation algorithm for MAX 2SAT.
(d) Can you do better than 0.878 ?

