MIT OpenCourseWare
http://ocw.mit.edu

6.854J / 18.415J Advanced Algorithms

- Frall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set Solution 3

1. Consider the following optimization problem:

Given $c \in \mathbb{R}^{n}, c \geq 0$, n even, find

$$
\begin{gathered}
\min \left\{c^{T} x: \quad \sum_{i \in S} x_{i} \geq 1 \quad \forall S \subset\{1, \ldots, n\},|S|=\frac{n}{2}\right. \\
\left.x_{j} \geq 0 \quad \forall j\right\}
\end{gathered}
$$

In class, it was shown that this can be solved by the ellipsoid method because there is an efficient separation algorithm. However, this problem has a more straightforward solution.
Develop an algorithm which finds the optimum in $O(n \log n)$ time. Prove its correctness.
Let

$$
P=\left\{x \geq 0: \sum_{i \in S} x_{i} \geq 1, \forall S \subset[n] ;|S|=\frac{n}{2}\right\}
$$

We would like to describe the structure of P, which is an unbounded polyhedron. We prove that $x \in P$ exactly when x can be written as

$$
x=\sum_{A \subseteq[n]} \lambda_{A} \chi_{A}
$$

where χ_{A} denotes the characteristic vector of $A, \lambda_{A} \geq 0$, and additionally

$$
\begin{equation*}
\sum_{|A|>n / 2}\left(|A|-\frac{n}{2}\right) \lambda_{A} \geq 1 \tag{*}
\end{equation*}
$$

First, suppose x satisfies this and consider S of size $n / 2$. Any set A of size $|A|>n / 2$ intersects S in at least $|A|-n / 2$ elements, therefore

$$
\sum_{i \in S} x_{i}=\sum_{i \in S} \sum_{A ; i \in A} \lambda_{A}=\sum_{A}|A \cap S| \lambda_{A} \geq \sum_{A ;|A|>n / 2}\left(|A|-\frac{n}{2}\right) \lambda_{A} \geq 1
$$

Conversely, let $x \in P$. Let π be a permutation such that

$$
x_{\pi(1)} \leq x_{\pi(2)} \leq \ldots \leq x_{\pi(n)}
$$

Set

$$
\begin{gathered}
\lambda_{1}=x_{\pi(1)} \\
\lambda_{k}=x_{\pi(k)}-x_{\pi(k-1)}
\end{gathered}
$$

and

$$
A_{k}=\{\pi(k), \pi(k+1), \ldots, \pi(n)\}
$$

for $k=1 \ldots n$. Then obviously $\lambda_{k} \geq 0$ and

$$
x=\sum_{k=1}^{n} \lambda_{k} \chi_{A_{k}} .
$$

Finally, we verify condition (*):

$$
\begin{aligned}
& \sum_{|A|>n / 2}\left(|A|-\frac{n}{2}\right) \lambda_{A}=\sum_{k=1}^{n / 2}\left(\left|A_{k}\right|-\frac{n}{2}\right) \lambda_{k}=\left(\frac{n}{2}\right) x_{\pi(1)}+\left(\frac{n}{2}-1\right)\left(x_{\pi(2)}-x_{\pi(1)}\right) \\
& \left.\quad+\left(\frac{n}{2}-2\right)\right)\left(x_{\pi(3)}-x_{\pi(2)}\right)+\ldots+\left(x_{\pi(n / 2)}-x_{\pi(n / 2-1)}\right)=\sum_{k=1}^{n / 2} x_{\pi(k)} \geq 1
\end{aligned}
$$

Now we can optimize over P much more easily. First, observe that for any optimal solution

$$
x^{*}=\sum_{A} \lambda_{A} \chi_{A},
$$

we can assume $\lambda_{A}=0$ for $|A| \leq n / 2$ and

$$
\sum_{|A|>n / 2}\left(|A|-\frac{n}{2}\right) \lambda_{A}=1,
$$

otherwise we decrease the coefficients until the equality holds. This won't increase the objective function $\sum c_{i} x_{i}$, since $c \geq 0$. Therefore an optimal solution always exists in the convex hull of $\left\{p_{A}:|A|>n / 2\right\}$ where

$$
p_{A}=\frac{1}{|A|-n / 2} \chi_{A} .
$$

We could evaluate the objective function at all these points but there are still too many of them. However, we can notice that for a given $k=|A|$, the only candidate for an optimum p_{A} is the set A which contains the k smallest components of c. Therefore the algorithm is the following:

- Sort the components of c and let A_{k} denote the indices of the k smallest components of c, for each $k>n / 2$. This takes $O(n \log n)$ time.
- For each $k>n / 2$, calculate $s_{k}=\sum_{i \in A_{k}} c_{k}$. This can be done in $O(n)$ time, because the sets A_{k} form a chain and we can use s_{k} to calculate s_{k+1} in constant time.
- Find the smallest value of

$$
c^{T} p_{A_{k}}=\frac{s_{k}}{k-n / 2}
$$

for $k>n / 2$. Return this as the optimum.
The algorithm runs in $O(n \log n)$ time and its correctness follows from the analysis above.
2. Fill a gap in the analysis of the interior point algorithm:

Suppose that (x, y, s) is a feasible vector, i.e. $x>0, s>0$,

$$
\begin{gathered}
A x=b, \\
A^{T} y+s=c
\end{gathered}
$$

and we perform one Newton step by solving for $\Delta x, \Delta y, \Delta s$:

$$
\begin{gathered}
A \Delta x=0 \\
A^{T} \Delta y+\Delta s=0 \\
\forall j ; \quad x_{j} s_{j}+\Delta x_{j} s_{j}+x_{j} \Delta s_{j}=\mu
\end{gathered}
$$

where $\mu>0$. The proximity function is defined as

$$
\sigma(x, s, \mu)=\sqrt{\sum_{j}\left(\frac{x_{j} s_{j}}{\mu}-1\right)^{2}} .
$$

Prove that if

$$
\sigma(x+\Delta x, s+\Delta s, \mu)<1
$$

then $(x+\Delta x, y+\Delta y, s+\Delta s)$ is a feasible vector for $A x=b, x>0$ and $A^{T} y+s=c, s>0$.

The equalities are satisfied directly by the assumptions:

$$
\begin{gathered}
A(x+\Delta x)=A x+A \Delta x=b \\
A^{T}(y+\Delta y)+(s+\Delta s)=\left(A^{T} y+s\right)+\left(A^{T} \Delta y+\Delta s\right)=c .
\end{gathered}
$$

We have to verify the positivity conditions. First we prove that at least one of $x_{j}+\Delta x_{j}, s_{j}+\Delta s_{j}$ is positive. We have $x_{j}>0, s_{j}>0$ and

$$
x_{j} s_{j}+\mu=2 x_{j} s_{j}+\Delta x_{j} s_{j}+x_{j} \Delta s_{j}=\left(x_{j}+\Delta x_{j}\right) s_{j}+x_{j}\left(s_{j}+\Delta s_{j}\right)>0
$$

therefore either $x_{j}+\Delta x_{j}$ or $s_{j}+\Delta s_{j}$ must be positive.
Second, we use the proximity condition:

$$
(\sigma(x+\Delta x, s+\Delta s, \mu))^{2}=\sum_{j}\left(\frac{\left(x_{j}+\Delta x_{j}\right)\left(s_{j}+\Delta s_{j}\right)}{\mu}-1\right)^{2}<1
$$

In particular, for each j

$$
\frac{\left(x_{j}+\Delta x_{j}\right)\left(s_{j}+\Delta s_{j}\right)}{\mu}>0
$$

which means that $x_{j}+\Delta x_{j}$ and $s_{j}+\Delta s_{j}$ have the same sign. We know they can't be negative so they must be positive.
3. Given a directed graph $G=(V, E)$ and two vertices s and t, we would like to find the maximum number of edge-disjoint paths between s and t (two paths are edge-disjoint if they don't share an edge). Denote the number of vertices by n and the number of edges by m.
(a) Argue that this problem can be solved as a maximum flow problem with unit capacities. Explain.
Let F be a union of k edge-disjoint paths from s to t. We define a flow of value k in a natural way - an edge gets a flow of value 1 if it is contained in F and and 0 otherwise. Since each path enters and exits any vertex (except s and t) the same number of times, flow conservation holds. The value of the flow is the number of edges in F leaving s (or entering t) which is k.
Conversely, let f be the maximum flow with unit capacities. As we shall prove, there is always a $0-1$ maximum flow, therefore we can assume that $f_{i j}$ is either 0 or 1 for each edge. Let

$$
F=\left\{(i, j) \in E: f_{i j}=1\right\}
$$

and k be the value of the flow. Then we can decompose F into k edgedisjoint paths in the following way: We start from s and follow a path of edges in F until we hit t. (This is possible due to flow conservation.) When we have found such a path, we remove it from F and consider the remaining flow of value $k-1$. By induction, we find exactly k such paths.
(b) Consider now the maximum flow problem on directed graphs $G=$ (V, E) with unit capacity edges (although some of the questions below would also apply to the more general case).
Given a feasible flow f, we can construct the residual network $G_{f}=\left(V, E_{f}\right)$ where

$$
E_{f}=\left\{(i, j):\left((i, j) \in E \& f_{i j}<u_{i j}\right) \text { or }\left((j, i) \in E \& f_{j i}>0\right)\right\}
$$

The residual capacity of an edge $(i, j) \in E_{f}$ is equal to $u_{i j}-f_{i j}$ or to $f_{j i}$ depending on the case above. Since we are dealing with the unit capacity case, all the $u_{i j}$'s are 1 and therefore for $0-1$ flows f (i.e. flows for which the value on any edge is 0 or 1), all residual capacities will be 1 .
We define the distance of a vertex $l_{f}(v)$ as the length of the shortest path from s to v in E_{f} (∞ for vertices which are not reachable from s in E_{f}). Further, define the levelled residual network as

$$
E_{f}^{l}=\left\{(i, j) \in E_{f}: l_{f}(j)=l_{f}(i)+1\right\}
$$

and a saturating flow g in E_{f}^{l} as a flow in E_{f}^{l} (with capacities being the residual capacities) such that every directed $s-t$ path in E_{f}^{l} has at least one saturated edge (i.e. an edge whose flow equals the residual capacity).
For a unit capacity graph and a given $0-1$ flow f, show how we can find the levelled residual network and a saturating flow in $O(m)$ time.
First, we can find E_{f} in $O(m)$ time simply by testing each edge and adding the edge or its reverse to E_{f}, depending on the current flow. Then we can label the vertices by $l_{f}(v)$ by a breadth-first search from s. This takes time $O(m)$, also. At the same time we find $d(f)$ as the length of the shortest path from s to t.
Then, we create E_{f}^{l} by keeping only the edges between successive levels. Thus all paths between s and t in E_{f}^{l} have length $d(f)$. Now we produce flow g by finding as many edge-disjoint s - t paths as possible. We start with $E^{\prime}=E_{f}^{l}$ and we perform a depth-first search from s. If we get stuck, we backtrack and remove edges on the dead-end branches since these are not in any $s-t$ path anyway. When we find an $s-t$ path, we set $g_{i j}=1$ along that path, and remove it from E^{\prime}. We continue searching for paths until E^{\prime} is empty. We spend a constant time on each edge before it's removed, which is $O(m)$ time total. When we are done, there is no s - t path in E_{f}^{l} without a saturated edge, otherwise it would still be in E^{\prime}.
(c) Prove that if the levelled residual network has no path from s to $t\left(l_{f}(t)=\infty\right)$, then the flow f is maximum.
Suppose there is a flow f^{*} of greater value. Then $f^{*}-f$ (where the difference is produced by either decreasing flow along an edge and increasing flow in the opposite direction) is a feasible flow in the residual network which has a positive value. This is easy to see because if $f_{i j}^{*}>f_{i j}$ then (i, j) appears in E_{f} and $f_{i j}^{*}-f_{i j} \leq u_{i j}-f_{i j}$ which is the capacity of this edge in E_{f}. If $f_{i j}^{*}<f_{i j}$ then $f_{i j}>0$ and therefore the opposite edge (j, i) appears in E_{f}. Also, $f_{i j}-f_{i j}^{*} \leq f_{i j}$ which is the capacity of (j, i) in E_{f}.

When a non-zero flow exists in E_{f}, there exists a path from s to t using only edges in E_{f}. The shortest of these paths would appear in E_{f}^{l} as well, which is a contradiction.
(d) For a flow f, define

$$
d(f)=l_{f}(t)
$$

(the distance from s to t in the residual network). Prove that if g is a saturating flow for f then

$$
d(f+g)>d(f)
$$

where $f+g$ denotes the flow obtained from f by either increasing the flow $f_{i j}$ by $g_{i j}$ or decreasing the flow $f_{j i}$ by $g_{i j}$ for every edge $(i, j) \in G_{f}$.
Consider E_{f} and the labeling of vertices $l_{f}(v)$. For every edge (i, j) of E_{f} we have that $l_{f}(j) \leq l_{f}(i)+1$. Since g is a saturating flow in E_{f}^{l}, the only edges (u, v) which are in E_{f+g} and not in E_{f} are such that $(v, u) \in E_{f}^{l}$, which implies that $l_{f}(v)=l_{f}(u)-1$. In summary, every edge (i, j) of E_{f+g} satisfies $l_{f}(j) \leq l_{f}(i)+1$ and, furthermore, the edges which are not in E_{f} actually satisfy the inequality strictly $l_{f}(j)<l_{f}(i)+1$. Consider now any path P in E_{f+g}. Adding up $l_{f}(j) \leq l_{f}(i)+1$ over the edges of P, we get that $d(f) \leq|P|$. Moreover, we can have $d(f)=|P|$ only if all edges of P also belong to E_{f}, which is impossible since g is a saturating flow. Hence, $d(f)<|P|$ and this is true for any path P of E_{f+g} implying that $d(f)<d(f+g)$.
(e) Prove that if f is a feasible $0-1$ flow with distance $d=d(f)$ and f^{*} is an optimum flow, then

$$
\operatorname{value}\left(f^{*}\right) \leq \operatorname{value}(f)+\frac{m}{d}
$$

and also

$$
\operatorname{value}\left(f^{*}\right) \leq \operatorname{value}(f)+\frac{n^{2}}{d^{2}} .
$$

Suppose f has distance d and f^{*} is an optimal flow. As noted before, $g=f^{*}-f$ is a feasible flow in the residual network E_{f}. Consider s - t cuts $C_{1}, C_{2}, \ldots C_{d}$ defined by

$$
C_{k}=\left\{(i, j) \in E_{f}: l_{f}(i) \leq k, l_{f}(j)>k\right\} .
$$

There are at most m edges in total and these cuts are disjoint, therefore

$$
\exists k ;\left|C_{k}\right| \leq \frac{m}{d}
$$

Since the value of g cannot be greater than any s - t cut in E_{f},

$$
\operatorname{value}\left(f^{*}\right)-\operatorname{value}(f)=\operatorname{value}(g) \leq \frac{m}{d}
$$

Similarly, define $d+1$ sets of vertices $V_{0}, V_{1}, V_{2}, \ldots, V_{d}$:

$$
V_{k}=\left\{i \in V: l_{f}(i)=k\right\} .
$$

By double counting,

$$
\exists k, 1 \leq k \leq n ;\left|V_{k-1} \cup V_{k}\right| \leq \frac{2 n}{d}
$$

Suppose that $\left|V_{k-1}\right|=a,\left|V_{k}\right| \leq \frac{2 n}{d}-a$. Note that the edges of C_{k} belong to $V_{k-1} \times V_{k}$. Therefore

$$
\text { value }\left(f^{*}\right)-\operatorname{value}(f)=\operatorname{value}(g) \leq\left|C_{k}\right| \leq a\left(\frac{2 n}{d}-a\right) \leq \frac{n^{2}}{d^{2}}
$$

(f) Design a maximum flow algorithm (for unit capacities) which proceeds by finding a saturating flow repeatedly. Try to optimize its running time. Using the observations above, you should achieve a running time bounded by $O\left(\min \left(m n^{2 / 3}, m^{3 / 2}\right)\right)$.
The algorithm starts with a zero flow f. Then we repeat the following:

- Find the levelled residual network E_{f}^{l}.
- Find a saturating flow g.
- Add g to f, reset the residual network and continue.

Each iteration takes $O(m)$ time. Since $d(f)$ increases every time and it cannot reach more than n (the maximum possible distance in G), the running time is clearly bounded by $O(m n)$. However, we can improve this. Suppose we iterate only d times and our flow after d iterations is f. We know $d(f) \geq d$, and if f^{*} is an optimal flow,

$$
\operatorname{value}\left(f^{*}\right)-\operatorname{value}(f) \leq \min \left\{\frac{m}{d}, \frac{n^{2}}{d^{2}}\right\}
$$

Because the flow increases by at least 1 in each iteration, the remaining number of iterations is bounded by $\min \left\{\frac{m}{d}, \frac{n^{2}}{d^{2}}\right\}$. We choose d in order to optimize our bound. It turns out that the best choice is $d_{1}=m^{1 / 2}$ for the bound based on m and $d_{2}=n^{2 / 3}$ for the bound based on n. Thus the total running time is $O\left(\min \left\{m^{3 / 2}, m n^{2 / 3}\right\}\right)$.
(g) Can we now justify that, for $0-1$ capacities, there is always an optimum flow that takes values 0 or 1 on every edge?
Our algorithm finds a $0-1$ flow and we have a proof of optimality, therefore there is always a $0-1$ optimal flow. This justifies our reasoning in part (a).

