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Lecture 5 
Lecturer: Michel X. Goemans 

Today, we continue the discussion of the minimum cost circulation problem. We first review the 
Goldberg-Tarjan algorithm, and improve it by allowing more flexibility in the selection of cycles. 
This gives the Cancel-and-Tighten algorithm. We also introduce splay trees, a data structure which 
we will use to create another data structure, dynamic trees, that will further improve the running 
time of the algorithm. 

1 Review of the Goldberg-Tarjan Algorithm 

Recall the algorithm of Golberg and Tarjan for solving the minimum cost circulation problem: 

1. Initialize the flow with f = 0. 

2. Repeatedly push flow along the minimum mean cost cycle Γ in the residual graph Gf , until 
no negative cycles exist. 

We used the notation 
c(Γ) 

µ(f) = min 
cycle Γ⊆Ef Γ| |

to denote the minimum mean cost of a cycle in the residual graph Gf . In each iteration of the 
algorithm, we push as much flow as possible along the minimum mean cost cycle, until µ(f) ≥ 0. 

We used �(f) to denote the minimum � such that f is �-optimal. In other words 

�(f) = min{� : ∃ potential p : V R such that cp(v, w) ≥ −� for all edges (v, w) ∈ Ef }.→ 

We proved that for all circulations f , 
�(f) = −µ(f). 

A consequence of this equality is that there exists a potential p such that any minimum mean cost 
cycle Γ satisfies cp(v, w) = −�(f) = µ(f) for all (v, w) ∈ Γ, since the cost of each edge is bounded 
below by mean cost of the cycle. 

1.1 Analysis of Goldberg-Tarjan 

Let us recall the analysis of the above algorithm. This will help us to improve the algorithm in order 
to achieve a better running time. Please refer to the previous lecture for the details of the analysis. 

We used �(f) as an indication of how close we are to the optimal solution. We showed that �(f) 
is a non-increasing quantity, that is, if f � is obtained by f after a single iteration, then �(f �) ≤ �(f). 
It remains to show that �(f) decreases “significantly” after several iterations. 

Lemma 1 Let f be any circulation, and f � be the circulation obtained after m iterations of the 
Goldberg-Tarjan algorithm. Then � �

1 
�(f �) ≤ 1 − �(f). 

n 

We showed that if the costs are all integer valued, then we are done as soon as we reach �(f) < 1 . n 
Using these two facts, we showed that the number of iterations of the above algorithm is at most 
O(mn log(nC)). An alternative analysis using �-fixed edges provides a strongly polynomial bound 
of O(m2n log n) iterations. Finally, the running time per a single iteration is O(mn) using a variant 
of Bellman-Ford (see problem set). 
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1.2 Towards a faster algorithm 

In the above algorithm, a significant amount of time is used to compute the minimum cost cycle. 
This is unnecessary, as our goal is simply to cancel enough edges in order to achieve a “significant” 
improvement in � once every several iterations. 

We can improve the algorithm by using a more flexible selection of cycles to cancel. The idea of 
the Cancel-and-Tighten algorithm is to push flows along cycles consisting entirely of negative cost 
edges. For a given potential p, we push as much flow as possible along cycles of this form, until no 
more such cycles exist, at which point we update p and repeat. 

2 Cancel-and-Tighten 

2.1 Description of the Algorithm 

Definition 1 An edge is admissible with respect to a potential p if cp(v, w) < 0. A cycle Γ is 
admissible if all the edges of Γ are admissible. 

Cancel and Tighten Algorithm (Goldberg and Tarjan): 

1. Initialization: f ← 0, p ← 0, � ← max(v,w)∈E c(v, w), so that f is �-optimal respect to p. 

2. While f is not optimum, i.e., Gf contains a negative cost cycle, do: 

(a) Cancel: While Gf contains a cycle Γ which is admissible with respect to p, push as much 
flow as possible along Γ. 

(b) Tighten: Update p to p� and � to ��, where p� and �� are chosen such that cp� (v, w) ≥ −�� 

for all edges (v, w) ∈ Ef and �� ≤ 1 − n 
1 �. 

Remark 1 We do not update the potential p every time we push a flow. The potential p gets updated 
in the tighten step after possibly several flows are pushed through in the Cancel step. 

Remark 2 In the tighten step, we do not need to find p� and �� such that �� is as small as possible; 
it is only necessary to decrease � by a factor of at least 1 − 1 . However, in practice, one tries to n 
decrease � by a smaller factor in order to obtain a better running time. 

Why is it always possible to obtain improvement factor of 1 − 1 in each iteration? This is n 
guaranteed by the following result, whose proof is similar to the proof used in the analysis during 
the previous lecture. 

Lemma 2 Let f be a circulation and f � be the circulation obtained by performing the Cancel step. 
Then we cancel at most m cycles, and 

1 
�(f �) ≤ 1 − 

n
�(f). 

Proof: Since we only cancel admissible edges, after any cycle is canceled in the Cancel step: 

•	 All new edges in the residual graph are non-admissible, since the edge costs are skew-symmetric; 

•	 At least one admissible edge is removed from the residual graph, since we push the maximum 
possible amount of flow through the cycle. 

5-2 



�

� � � � 

� � 

� � 

Since we begin with at most m admissible edges, we cannot cancel more than m cycles, as each cycle 
canceling reduces the number of admissible edges by at least one. 

After the cancel step, every cycle Γ contains at least one non-admissible edge, say (u1, v1) ∈ Γ 
with cp(u1, v1) ≥ 0. Then the mean cost of Γ is 

c(Γ) 1 � 
cp(u, v) ≥ −(|Γ| − 1) 

�(f) = − 1 − 
1

1 − 
1 

�(f). 
|Γ| 
≥
|Γ| 

(u1,v1 )=(u,v)∈Γ 
|Γ| |Γ| 

�(f) ≥ − 
n 

Therefore, �(f �) = −µ(f �) ≤ 1 − n 
1 �(f). � 

2.2 Implementation and Analysis of Running Time 

2.2.1 Tighten Step 

We first discuss the Tighten step of the Cancel-and-Tighten algorithm. In this step, we wish to find 
a new potential function p� and a constant �� such that cp� (v, w) ≥ −�� for all edges (v, w) ∈ Ef 

and �� ≤ 1 − n 
1 �. We can find the smallest possible �� in O(mn) time by using a variant of the 

Bellman-Ford algorithm. However, since we do not actually need to find the best possible ��, it is 
possible to vastly reduce the running time of the Tighten step to O(n), as follows. 

When the Cancel step terminates, there are no cycles in the admissible graph Ga = (V,A), the 
subgraph of the residual graph with only the admissible edges. This implies that there exists a 
topological sort of the admissible graph. Recall that a topological sort of a directed acyclic graph 
is a linear ordering l : V → {1, . . . , n} of its vertices such that l(v) < l(w) if (v, w) is an edge of the 
graph; it can be achieved in O(m) time using a standard topological sort algorithm (see, e.g., CLRS 
page 550). This linear ordering enables us to define a new potential function p� by the equation 
p�(v) = p(v) − l(v)�/n. We claim that this potential function satisfies our desired properties. 

Claim 3 The new potential function p�(v) = p(v)− l(v)�/n satisfies the property that f is ��-optimal 
with respect to p� for some constant �� ≤ (1 − 1/n)�. 

Proof: Let (v, w) ∈ Ef , then 

cp� (v, w) = c(v, w) + p�(v) − p�(w) 
= c(v, w) + p(v) − l(v)�/n − p(w) + l(w)�/n 

= cp(v, w) + (l(w) − l(v))�/n. 

We consider two cases, depending on whether or not l(v) < l(w). 

Case 1: l(v) < l(w). Then 

cp� (v, w) = cp(v, w) + (l(w) − l(v))�/n 

≥ −� + �/n 

= −(1 − 1/n)�. 

Case 2: l(v) > l(w), so that (v, w) is not an admissible edge. Then 

cp� (v, w) = cp(v, w) + (l(w) − l(v))�/n 

≥ 0 − (n − 1)�/n 

= −(1 − 1/n)�. 

In either case, we see that f is ��-optimal with respect to p�, where �� ≤ (1 − 1/n)�. � 
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2.2.2 Cancel Step 

We now shift our attention to the implementation and analysis of the Cancel step. Näıvely, it takes 
O(m) time to find a cycle in the admissible graph Ga = (V,A) (e.g., using Depth-First Search) and 
push flow along it. Using a more careful implementation of the Cancel step, we shall show that each 
cycle in the admissible graph can be found in an “amortized” time of O(n). 

We use a Depth-First Search (DFS) approach, pushing as much flow as possible along an ad
missible cycle and removing saturated edges, as well as removing edges from the admissible graph 
whenever we determine that they are not part of any cycle. Our algorithm is as follows: 

Cancel(Ga = (V,A)): Choose an arbitrary vertex u ∈ V , and begin a DFS rooted at u. 

1. If we reach a vertex v that has no outgoing edges, then we backtrack, deleting from A the 
edges that we backtrack along, until we find an ancestor r of v for which there is another child 
to explore. (Notice that every edge we backtrack along cannot be part of any cycle.) Continue 
the DFS by exploring paths outgoing from r. 

2. If we find a cycle Γ, then we push the maximum possible flow through it.	 This causes at 
least one edge along Γ to be saturated. We remove the saturated edges from A, and start 
the depth-first-search from scratch using G�

a = (V,A�), where A� denotes A with the saturated 
edges removed. 

Every edge that is not part of any cycle is visited at most twice (since it is removed from the 
admissible graph the second time), so the time taken to remove edges that are not part of any cycle 
is O(m). Since there are n vertices in the graph, it takes O(n) time to find a cycle (excluding the 
time taken to traverse edges that are not part of any cycle), determine the maximum flow that 
we can push through it, and update the flow in each of its edges. Since at least one edge of A is 
saturated and removed every time we find a cycle, it follows that we find at most m cycles. Hence, 
the total running time of the Cancel step is O(m + mn) = O(mn). 

2.2.3 Overall Running Time 

From the above analysis, we see that the Cancel step requires O(mn) time per iteration, whereas 
the Tighten step only requires O(m) time per iteration. In the previous lecture, we determined 
that the Cancel-and-Tighten algorithm requires O(min(n log(nC),mn log n)) iterations. Hence the 
overall running time is O(min(mn2 log(nC),m2n2 log n)). 

Over the course of the next few lectures, we will develop data structures that will enable us to 
reduce the running time of a single Cancel step from O(mn) to O(m log n). Using dynamic trees, we 
can reduce the running time of the Cancel step to an amortized time of O(log n) per cycle canceled. 
This will reduce the overall running time to O(min(mn log(nC) log n, m2n log2 n)). 

3 Binary Search Trees 

In this section, we review some of the basic properties of binary search trees and the operations 
they support, before introducing splay trees. A Binary Search Tree (BST) is a data structure that 
maintains a dictionary. It stores a collection of objects with ordered keys. For an object (or node) 
x, we use key [x] to denote the key of x. 

Property of a BST. The following invariant must always be satisfied in a BST: 

• If y lies in the left subtree of x, then key [y] ≤ key [x] 

• If z lies in the right subtree of x, then key [z] ≥ key [x] 
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Operations on a BST. Here are some operations typically supported by a BST: 

•	 Find(k): Determines whether the BST contains an object x with key [x] = k; if so, returns the 
object, and if not, returns false. 

•	 Insert(x): Inserts a new node x into the tree. 

•	 Delete(x): Deletes x from the tree. 

•	 Min: Finds the node with the minimum key from the tree. 

•	 Max: Finds the node with the minimum key from the tree. 

•	 Successor(x): Find the node with the smallest key greater than key [x]. 

•	 Predecessor(x): Find the node with the greatest key less than key [x]. 

•	 Split(x): Returns two BSTs: one containing all the nodes y where key [y] < key [x], and the 
other containing all the nodes z where key [z] ≥ key [x]. 

•	 Join(T1, x, T2): Given two BSTs T1 and T2, where all the keys in T1 are at most key [x], and 
all the keys in T2 are at least key [x], returns a BST containing T1, x and T2. 

For example, the procedure Find(k) can be implemented by traversing through the tree, and 
branching to the left (resp. right) if the current node has key greater than (resp. less than) k. The 
running time for many of these operations is linear in the height of the tree, which can be as high 
as O(n) in the worst case, where n is the number of nodes in the tree. 

A balanced BST is a BST whose height is maintained at O(log n), so that the above operations 
can be run in O(log n) time. Examples of BSTs include Red-Black trees, AVL trees, and B-trees. 

In the next lecture, we will discuss a data structure called splay trees, which is a self-balancing 
BST with amortized cost of O(log n) per operation. The idea is that every time a node is accessed, 
it gets pushed up to the root of the tree. 

The basic operations of a splay tree are rotations. They are illustrated the following diagram. 

A B

C
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A

B C

x

y
zig (right rotation)

zag (left rotation)

5-5 


