Intro

Administrivia.

- Signup sheet.
- prerequisites: $6.046,6.041 / 2$, ability to do proofs
- homework weekly (first next week)
- collaboration
- independent homeworks
- grading requirement
- term project
- books.
- question: scribing?

Randomized algorithms: make random choices during run. Main benefits:

- speed: may be faster than any deterministic
- even if not faster, often simpler (quicksort)
- sometimes, randomized is best
- sometime, randomized idea leads to deterministic algorithm

Distinguish average-cast analysis

- Probabilistic analysis assuming random input
- randomized algorithms do not assume random inputs
- so analyses are more applicable

We don't really use random numbers. But randomized algorithms break patterns we don't know are there.

- deterministic algorithm: works well except a few specific cases.
- But those are the ones you will encounter (Murphy)!
- randomized: almost always works well on any case
- but sometimes does bad on any case, so risky for life-threatening errors.

Course objective:

- Randomization is a general technique. Applies to all areas of CS.
- Underlying it is a common set of tools.
- Goal is to give familiarity with those tools so you can apply them to your own problems.
- To present tools, we draw appliations from many areas of CS: data structures, geometric algos, graph algos, parallel and distributed, number theory.
- Because so many, only a brief taste of each.
- But sufficient to go on alone.

Basic methodologies.

- Avoiding adversarial inputs
- sorted quicksort list
- a kind of random reordering (geometry-BSP)
- hashing to same buckets
- online algorithms
- note: "adversarial" may mean "well structured" i.e. natural
- fingerprinting/verification
- generate short random fingerprints for things
- faster than comparing things
- almost every fingerprint works
- so a random one works
- random sampling. graph algs, computational geometry, median
- fast way to find "typical" members
- solve representative subproblem fast
- extrapolate to solution of original problem
- load balancing
- randomization spreads things out uniformly
- parallel algs, routing, hashing
- symmetry breaking
- random decisions keep everyone from doing the same thing
- ethernet
- deadlocks avoidance in distributed systems (MUST randomize)
- Probabilistic existence proofs
- thought experiment
- prove an object is build with positive probability
- guarantees object exists
- makes search for algo worthwhile.

Today: 2 really basic principles:

- linearity of expectation
- product of event probabilities (independence)

Then some fundamental ideas:

- Kinds of randomized algorithms
- a bit of complexity

Quicksort

Items S_{1}, \ldots, S_{n} to be sorted

- suppose could pick middle element:

$$
T(n)=2 T(n / 2)+O(n)=O(n \log n)
$$

works since divides into much smaller subproblems

- picking middle is hard. But an almost middle element is OK.
- pick random element. "probably" near middle and divides problem in two
- bound expected number of comparisons C
- $X_{i j}=1$ if compare i to j
- linearity of expectation: $E[C]=\sum E\left[X_{i j}\right]$
- $E\left[X_{i j}\right]=p_{i j}$
- Consider smallest recursive call involving both i and j.
- pivot must be one of S_{i}, \ldots, S_{j}. all equally likely
- S_{i} and S_{j} get compared if pivot is S_{i} or S_{j}
- probability is at most $2 /(j-i+1)$ (may have outer elements)
- analysis:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j>i} p_{i j} & \leq \sum_{i=1}^{n} \sum_{j>i} 2 /(j-i+1) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n-i+1} 2 / k \\
& \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} 1 / k \\
& \leq 2 n H_{n}
\end{aligned}
$$

(Define H_{n}, claim $O(\log n)$.)

$$
=O(n \log n)
$$

- analysis holds for every input, doesn't assume random input
- we proved expected. can show high probability
- how did we pick a random elements? Depends on model.
- algorithm always works, but might be slow.

BSP

- linearity of expectation. hat check problem
- Rendering an image
- render a collection of polygons (lines)
- painters algorithm: draw from back to front; let front overwrite
- need to figure out order with respect to user
- define BSP.
- BSP is a data structure that makes order determination easy
- Build in preprocess step, then render fast.
- Choose any hyperplane (root of tree), split lines onto correct side of hyperplane, recurse
- If user is on side 1 of hyperplane, then nothing on side 2 blocks side 1, so paint it first. Recurse.
- time=BSP size
- sometimes must split to build BSP
- how limit splits?
- autopartitions
- random auto
- analysis
- index $(u, v)=k$ if k lines block v from u
- $u \dashv v$ if v cut by u auto
- probability $1 /(1+\operatorname{index}(u, v))$.
- tree size is (by linearity of E)

$$
n+\sum 1 / \operatorname{index}(u, v) \leq \sum_{u} 2 H_{n}
$$

- result: exists size $O(n \log n)$ auto
- gives randomized construction
- equally important, gives probabilistic existence proof of a small BSP
- so might hope to find deterministically.

MinCut

- the problem
- contraction
- conditionally independent events
- give/analyze
- repetition for better success probability (independent events)
- faster implementation later

Monte Carlo vs. Las Vegas

- turn LV to MC by truncating
- turn MC to LV by certifying.
- if can't certify, dangerous!

