Admin

Arora talk.
No class Monday.

Review

Fingerprinting:

- Universe of size u
- Map to random fingerprint in universe of size $v \leq u$
- probability of collision $1 / v$

Freivald's technique

- verify matrix multiplication $A B=C$
- check $A B r=C r$ for random r in $\{0,1\}^{n}$
- probability of success $1 / 2$
- works to check any matrix identity, not just product
- useful if matrices "implicit" like $A B$
- mapping size- n^{2} matrices to size- n vectors

In general, many ways to fingerprint explicitly represented objects. But for implicit objects, different methods have different strengths and weaknesses.
We'll fingerprint 3 ways:

- vector multiply
- number mod a random prime
- polynomial evaluation at a random point

String matching

Checksums:

- Alice and Bob have bit strings of length n
- Think of n bit integers a, b
- take a prime number p, compare $a \bmod p$ and $b \bmod p$ with $\log p$ bits.
- trouble if $a=b(\bmod p)$. How avoid? How likely?
$-c=a-b$ is n-bit integer.
- so at most n prime factors.
- How many prime factors less than $k ? \Theta(k / \ln k)$
- so take $2 n^{2} \log n$ limit
- number of primes about n^{2}
- So on random one, $1 / n$ error prob.
- $O(\log n)$ bits to send.
- implement by add/sub, no mul or div!

How find prime?

- Well, a randomly chosen number is prime with prob. $1 / \ln n$,
- so just try a few.
- How know its prime? Simple randomized test (later)

Pattern matching in strings

- m-bit pattern
- n-bit string
- work mod prime p of size at most t
- prob. error at particular point most $m /(t / \log t)$ from above
- so pick big t, union bound
- implement by add/sub as shift in bits

Fingerprints by Polynomials

Good for fingerprinting "composable" data objects.

- check if $P(x) Q(x)=R(x)$
- P and Q of degree n (means R of degree at most $2 n$)
- mult in $O(n \log n)$ using FFT
- evaluation at fixed point in $O(n)$ time
- Random test:
$-S \subseteq F$
- pick random $r \in S$
- evaluate $P(r) Q(r)-R(r)$
- suppose this poly not 0
- then degree $2 n$, so at most $2 n$ roots
- thus, prob (discover nonroot) $|S| / 2 n$
- so, eg, sufficient to pick random int in $[0,4 n]$
- Note: no prime needed (but needed for Z_{p} sometimes)
- Again, major benefit if polynomial implicitly specified.

String checksum:

- treat as degree n polynomial
- eval a random $O(\log n)$ bit input,
- prob. get 0 small

Multivariate:

- n variables
- degree of term: sum of vars degrees
- total degree d : max degree of term.
- Schwartz-Zippel: fix $S \subseteq F$ and let each r_{i} random in S

$$
\operatorname{Pr}\left[Q\left(r_{i}\right)=0 \mid Q \neq 0\right] \leq d /|S|
$$

Note: no dependence on number of vars!
Proof:

- induction. Base done.
- $Q \neq 0$. So pick some (say) x_{1} that affects Q
- write $Q=\sum_{i \leq k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)$ with $Q_{k}() \neq 0$ by choice of k
- Q_{k} has total degree at most $d-k$
- By induction, prob Q_{k} evals to 0 is at most $(d-k) /|S|$
- suppose it didn't. Then $q(x)=\sum x_{1}^{i} Q\left(r_{2}, \ldots, r_{n}\right)$ is a nonzero univariate poly.
- by base, prob. eval to 0 is $k /|S|$
- add: get $d /|S|$
- why can we add?

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =\operatorname{Pr}\left[E_{1} \cap \overline{E_{2}}\right]+\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \\
& \leq \operatorname{Pr}\left[E_{1} \mid \overline{E_{2}}\right]+\operatorname{Pr}\left[E_{2}\right]
\end{aligned}
$$

Small problem:

- degree n poly can generate huge values from small inputs.
- Solution 1:
- If poly is over Z_{p}, can do all math $\bmod p$
- Need p exceeding coefficients, degree
- p need not be random
- Solution 2:
- Work in Z, deduce nonzero value from schwartz-zippel
- deduce nonzero mod random q (as in string matching)
- so do all computation mod random q
- q range must exceed bits (not value) of coeff.

Perfect matching

- Define
- Edmonds matrix: variable $x_{i j}$ if edge $\left(u_{i}, v_{j}\right)$
- determinant nonzero if PM
- poly nonzero symbolically.
- so apply Schwartz-Zippel
- Degree is n
- So number $r \in\left(1, \ldots, n^{2}\right)$ yields 0 with prob. $1 / n$

Det may be huge!

- We picked random input r, knew evaled to nonzero but maybe huge number
- How big? About $n!r^{n}$,
- So only $O(n \log n+n \log r)$ prime divisors
- (or, a string of that many bits)
- So compute $\bmod p$, where p is $O\left((n \log n+n \log r)^{2}\right)$
- only need $O(\log n+\log \log r)$ bits

Treaps

Dictionaries for ordered sets

- New Operations.
- enumerate in order
- successor-of, predecessor-of (even if not in set)
- join (S, k, T), split, $\operatorname{paste}(S, T)$

Binary tree.

- child and parent pointers
- endogenous: leaf nodes empty.
- balanced if depth $O(\log n)$
- average case.
- worst case

Tree balancing

- rotations
- implementing operations.
- red/black, AVL
- splay trees.
- drawbacks in geometry:
- auxiliary structure on nodes in subtree
- rebuild on rotation

Returning to average case:

- Assign random "arrival orders" to keys
- Build tree as if arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities-follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Returning to average case:

- Assign random "arrival orders" to keys
- Build tree as if arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities-follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth $d(x)$ analysis

- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
- for $x \operatorname{rank} k, E[d(x)]=H_{k}+H_{n-k+1}-1$
- $S^{-}=\{y \in S \mid y \leq x\}$
- $Q_{x}=$ ancestors of x
- Show $E\left[Q_{x}^{-}\right]=H_{k}$.
- to show: $y \in Q_{x}^{-}$iff inserted before all $z, y<z \leq x$.
- deduce: item j away has prob $1 / j$. Add.
- Suppose $y \in Q_{x}^{-}$.
- The inserted before x
- Suppose some z between inserted before y
- Then y in left subtree of z, x in right, so not ancestor
- Thus, y before every z
- Suppose y first
- then x follows y on all comparisons (no z splits
- So ends up in subtree of y

Rotation analysis

- Insert/Delete time
- define spines
- equal left spine of right sub plus right spine of left sub
- proof: when rotate up, on spine increments, other stays fixed.
- R_{x} length of right spine of left subtree
- $E\left[R_{x}\right]=1-1 / k$ if rank k
- To show: $y \in R_{x}$ iff
- inserted after x
- all $z, y<z<x$, arrive after y.
- if z before y, then y goes left, so not on spine
- deduce: if r elts between, r ! of $(r+2)$! permutations work.
- So probability $1 / r^{2}$.
- Expectation $\sum 1 /(1 \cdot 2)+1 /(2 \cdot 3)+\cdots=1-1 / k$
- subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.

