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Review 

Fingerprinting: 

Universe of size u• 

• Map to random fingerprint in universe of size v ≤ u 

• probability of collision 1/v 

Freivald’s technique 

• verify matrix multiplication AB = C 

• check ABr = Cr for random r in {0, 1}n 

• probability of success 1/2 

• works to check any matrix identity, not just product 

• useful if matrices “implicit” like AB 

• mapping size-n2 matrices to size-n vectors 

In general, many ways to fingerprint explicitly represented objects. But for implicit objects,

different methods have different strengths and weaknesses.

We’ll fingerprint 3 ways:


• vector multiply 

• number mod a random prime 

• polynomial evaluation at a random point 

String matching 

Checksums: 

• Alice and Bob have bit strings of length n 

• Think of n bit integers a, b 

• take a prime number p, compare a mod p and b mod p with log p bits. 

• trouble if a = b (mod p). How avoid? How likely? 

– c = a − b is n-bit integer. 
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–	 so at most n prime factors. 

–	 How many prime factors less than k? Θ(k/ ln k) 

–	 so take 2n2 log n limit 

–	 number of primes about n2 

–	 So on random one, 1/n error prob. 

–	 O(log n) bits to send. 

– implement by add/sub, no mul or div!


How find prime?


–	 Well, a randomly chosen number is prime with prob. 1/ ln n, 

–	 so just try a few. 

– How know its prime? Simple randomized test (later) 

Pattern matching in strings 

•	 m-bit pattern 

•	 n-bit string 

•	 work mod prime p of size at most t 

•	 prob. error at particular point most m/(t/ log t) from above 

•	 so pick big t, union bound 

•	 implement by add/sub as shift in bits 

Fingerprints by Polynomials 

Good for fingerprinting “composable” data objects. 

•	 check if P (x)Q(x) = R(x) 

•	 P and Q of degree n (means R of degree at most 2n) 

•	 mult in O(n log n) using FFT 

•	 evaluation at fixed point in O(n) time


Random test:
• 

–	 S ⊆ F 

–	 pick random r ∈ S 

–	 evaluate P (r)Q(r) − R(r) 

–	 suppose this poly not 0 
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– then degree 2n, so at most 2n roots 

– thus, prob (discover nonroot) |S|/2n 

– so, eg, sufficient to pick random int in [0, 4n] 

– Note: no prime needed (but needed for Zp sometimes) 

• Again, major benefit if polynomial implicitly specified. 

String checksum: 

• treat as degree n polynomial 

• eval a random O(log n) bit input, 

• prob. get 0 small 

Multivariate: 

n variables • 

• degree of term: sum of vars degrees 

• total degree d: max degree of term. 

•	 Schwartz-Zippel: fix S ⊆ F and let each ri random in S


Pr[Q(ri) = 0 Q = 0] ≤ d/ S


Note: no dependence on number of vars! 

Proof: 

induction. Base done. • 

• Q = 0. So pick some (say) x1 that affects Q 

• write Q = i≤k x1
i Qi(x2, . . . , xn) with Qk () = 0 by choice of k 

• Qk has total degree at most d− k 

• By induction, prob Qk evals to 0 is at most (d− k)/ S| | 

• suppose it didn’t. Then q(x) = x1
i Q(r2, . . . , rn) is a nonzero univariate poly. 

• by base, prob. eval to 0 is k/|S| 

• add: get d/|S| 

• why can we add? 

Pr[E1] =	 Pr[E1 ∩ E2] + Pr[E1 ∩ E2] 

Pr[E1 | E2] + Pr[E2]≤ 
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Small problem: 

•	 degree n poly can generate huge values from small inputs.


Solution 1:
• 

–	 If poly is over Zp, can do all math mod p 

–	 Need p exceeding coefficients, degree 

– p need not be random


Solution 2:
• 

–	 Work in Z, deduce nonzero value from schwartz-zippel 

–	 deduce nonzero mod random q (as in string matching) 

–	 so do all computation mod random q 

–	 q range must exceed bits (not value) of coeff. 

Perfect matching 

Define• 

•	 Edmonds matrix: variable xij if edge (ui, vj )


determinant nonzero if PM
• 

•	 poly nonzero symbolically. 

–	 so apply Schwartz-Zippel 

–	 Degree is n 

–	 So number r ∈ (1, . . . , n2) yields 0 with prob. 1/n 

Det may be huge! 

•	 We picked random input r, knew evaled to nonzero but maybe huge number 

n •	 How big? About n!r , 

•	 So only O(n log n + n log r) prime divisors 

•	 (or, a string of that many bits) 

• So compute mod p, where p is O((n log n + n log r)2)


• only need O(log n + log log r) bits
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Treaps 

Dictionaries for ordered sets 

•	 New Operations. 

–	 enumerate in order 

–	 successor-of, predecessor-of (even if not in set) 

– join(S, k, T ), split, paste(S, T ) 

Binary tree. 

•	 child and parent pointers 

•	 endogenous: leaf nodes empty. 

•	 balanced if depth O(log n) 

•	 average case.


worst case
• 

Tree balancing 

rotations• 

•	 implementing operations. 

•	 red/black, AVL 

•	 splay trees. 

–	 drawbacks in geometry: 

–	 auxiliary structure on nodes in subtree 

– rebuild on rotation 

Returning to average case: 

•	 Assign random “arrival orders” to keys


Build tree as if arrived in that order
• 

•	 Average case applies


No rotations on searches
• 

Choosing priorities 

•	 define arrival by random priorities 

•	 assume continuous distribution, fix. 
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• eg, use 2 log n bits, w.h.p. no collisions 

Treaps. 

•	 tree has keys in heap order of priorities 

•	 unique tree given priorities—follows from insertion order 

•	 implement insert/delete etc. 

• rotations to maintain heap property 

Returning to average case: 

•	 Assign random “arrival orders” to keys


Build tree as if arrived in that order
• 

•	 Average case applies


No rotations on searches
• 

Choosing priorities 

•	 define arrival by random priorities 

•	 assume continuous distribution, fix. 

• eg, use 2 log n bits, w.h.p. no collisions 

Treaps. 

•	 tree has keys in heap order of priorities 

•	 unique tree given priorities—follows from insertion order 

•	 implement insert/delete etc. 

• rotations to maintain heap property 

Depth d(x) analysis 

•	 Tree is trace of a quicksort 

•	 We proved O(log n) w.h.p. 

•	 for x rank k, E[d(x)] = Hk + Hn−k+1 − 1 

•	 S− = {y ∈ S | y ≤ x} 

•	 Qx = ancestors of x 

•	 Show E[Q−] = Hk .x 
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•
 to show: y ∈ Q
−x iff inserted before all z, y < z ≤ x. 

• deduce: item j away has prob 1/j. Add. 

• Suppose y ∈ Q−
x . 

–	 The inserted before x 

–	 Suppose some z between inserted before y 

–	 Then y in left subtree of z, x in right, so not ancestor 

–	 Thus, y before every z 

•	 Suppose y first 

–	 then x follows y on all comparisons (no z splits 

– So ends up in subtree of y 

Rotation analysis 

•	 Insert/Delete time 

–	 define spines 

–	 equal left spine of right sub plus right spine of left sub 

–	 proof: when rotate up, on spine increments, other stays fixed. 

•	 Rx length of right spine of left subtree 

•	 E[Rx] = 1 − 1/k if rank k 

•	 To show: y ∈ Rx iff 

–	 inserted after x 

–	 all z, y < z < x, arrive after y. 

–	 if z before y, then y goes left, so not on spine 

•	 deduce: if r elts between, r! of (r + 2)! permutations work. 

•	 So probability 1/r2 . 

•	 Expectation 1/(1 · 2) + 1/(2 · 3) + · · · = 1 − 1/k 

•	 subtle: do analysis only on elements inserted in real-time before x, but now assume 
they arrive in random order in virtual priorities. 

7



