
Midterm out today. 
Collaborations. 

Shortest Paths 

classical shortest paths. 

•	 dijkstra’s algorithm 

• floyd’s algorithm. similarity to matrix multiplication 

Matrices 

•	 length 2 paths by squaring 

•	 matrix multiplication. strassen. 

•	 shortest paths by “funny multiplication.” 

–	 huge integer implementation 

– base-(n + 1) integers 

Boolean matrix multiplication 

•	 easy. 

•	 gives objects at distance 2. 

•	 gives nM M (n) algorithm for problem


what about recursive?
• 

•	 well can get to within 2: let Tk be boolean “distance less than or equal to 2k . Squaring 
gives Tk+1. 

•	 O(log n) squares for unit length


what about exact?
• 

Seidel’s distance algorithm for unit lengths. 

•	 log-size integers: 

–	 parities suffice: 

∗	 square G to get adjacency A�, distance D�


if Dij even then Dij = 2D�

ij· 

if Dij	 odd then Dij = 2D�
ij − 1· 

–	 For neighbors i, k, 

∗	 Dij − 1 ≤ Dkj ≤ Dij + 1 

1 



� � 

∗ exists k, Dkj = Dij − 1 

– Parities 

∗ If Dij even, then D�
ij for every neighbor kkj ≥ D�

∗ If Dij odd, then D�
ij for every neighbor k, and strict for at least one kj ≤ D�

– Add 

∗ Dij even iff Sij = D�
k kj ≥ Dij d(i) 

∗ Dij odd iff D�
kj < Dij d(i)k 

∗ How determine? find S = AD� 

• Result: all distances in O(M (n) log n) time. 

This is deterministic distance algorithm. 
To find paths: Witness product 

• example: tripartite one-hop hop case 

Modify matrix alg: 

• easy case: unique witness 

– multiply column c by c. 

– read off witness identity 

• reduction to easy case: 

– Suppose r columns have witness 

– Suppose choose each with prob. p 

– Prob. exactly 1 witness: rp(1 − p)r−1 ≈ 1/e 

– Try all values of r 

– Wait, too many. 

• Approx 

– Suppose p = 2/r 

– Then prob. exactly 1 is ≈ 2/e2 

– So anything in range 1/r . . . 1/2r will do. 

–	 So try p all powers of 2.


≤ r ≤ 2k+1
– suppose 2k 

– choose each column with probability 2−k . 

– prob. exactly one witness: r · 2−k (1 − 2−k )r−1 ≥ (1/2)(1/e2) 

– so try log n distinct powers of 2, each O(log n) times 

• So, can find shortest paths by doing one Matrix mul for each distance value 

2 



– n matrix muls


generalize to more distances:


–	 distances now known 

–	 for each node, dest, find neighbor with distance one less 

–	 boolean matrix R of “distance is k − 1” 

– boolean witness product of RA


Mod 3:
• 

–	 Recall some neighbor distance down by one 

–	 so compute distances mod 3. 

–	 suppose Dij = 1 mod 3 

–	 then look for k neighbor of i such that Dkj = 0 mod 3 

–	 let D(s) 
= 1 iff Dij = s mod 3 ij 

–	 than AD(s) has ij = 1 iff a neighbor k of i has D(s) 
kj 

–	 so, witness matrix mul! 

Parallel Algorithms 

PRAM 

•	 P processors, each with a RAM, local registers 

•	 global memory of M locations 

•	 each processor can in one step do a RAM op or read/write to one global memory 
location 

•	 synchronous parallel steps 

•	 various conflict resolutions (CREW, EREW, CRCW) 

• not realistic, but explores “degree of parallelism” 

Randomization in parallel: 

•	 load balancing 

•	 symmetry breaking 

• isolating solutions 

Classes: 

•	 NC: poly processor, polylog steps 

3 



•	 RNC: with randomization. polylog runtime, monte carlo 

•	 ZNC: las vegas NC


immune to choice of conflict resolution
• 

Practical observations: 

•	 very little can be done in o(log n) with poly processors


• lots can be done in Θ(log n)


• often concerned about work which is processors times time


• algorithm is “optimal” if work equals best sequential 

Basic operations 

•	 and, or 

•	 counting ones 

• parallel prefix 

Addition 

•	 Prefix sum over “kill”, “propogate”, “carry” operations 

•	 handles n-bit numbers in O(log n) time 

•	 multiplication as n2 additions (better methods exist) 

Sorting 

Quicksort in parallel: 

•	 n processors 

•	 each takes one item, compares to splitter 

•	 count number of predecessors less than splitter 

•	 determines location of item in split 

•	 total time O(log n) 

•	 combine: O(log n) per layer with n processors


problem: Ω(log2 n) time bound
• 

problem: n log2 n work • 

4 



Perfect Matching 

We focus on bipartite; book does general case. 
Last time, saw detection algorithm in RNC: 

Tutte matrix • 

Sumbolic determinant nonzero iff PM • 

•	 assign random values in 1, . . . , 2m 

• Matrix Mul, Determinant in NC 

How about finding one? 

•	 If unique, no problem 

•	 Since only one nozero term, ok to replace each entry by a 1. 

•	 Remove each edge, see if still PM in parallel 

•	 multiplies processors by m 

• but still NC 

Idea: 

•	 make unique minimum weight perfect matching


find it
• 

Isolating lemma: [MVV] 

•	 Family of distinct sets over x1, . . . , xm 

•	 assign random weights in 1, . . . , 2m 

•	 Pr(unique min-weight set)≥ 1/2 

•	 Odd: no dependence on number of sets! 

• (of course < 2m) 

Proof: 

•	 Fix item xi 

•	 Y is min-value sets containing xi 

•	 N is min-value sets not containing xi


true min-sets are either those in Y or in N
• 

•	 how decide? Value of xi 

5 



� 

•	 For xi = −∞, min-sets are Y 

•	 For xi = +∞, min-sets are N 

•	 As increase from −∞ to ∞, single transition value when both X and Y are min-weight 

•	 If only Y min-weight, then xi in every min-set 

•	 If only X min-weight, then xi in no min-set 

•	 If both min-weight, xi is ambiguous 

•	 Suppose no xi ambiguous. Then min-weight set unique! 

•	 Exactly one value for xi makes it ambiguous given remainder 

•	 So Pr(ambiguous)= 1/2m 

•	 So Pr(any ambiguous)< m/2m = 1/2 

Usage: 

Consider tutte matrix A• 

•	 Assign random value 2wi to xi, with wi ∈ 1, . . . , 2m 

wi •	 Weight of matching is 2


Let W be minimum sum
• 

•	 Unique w/pr 1/2 

•	 If so, determinant is odd multiple of 2W 

•	 Try removing edges one at a time 

•	 Edge in PM iff new determinant/2W is even. 

•	 Big numbers? No problem: values have poly number of bits 

NC algorithm open.

For exact matching, P algorithm open.


6



