Midterm out today. Collaborations.

Shortest Paths

classical shortest paths.

- dijkstra's algorithm
- floyd's algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by "funny multiplication."
 - huge integer implementation
 - base-(n+1) integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2.
- gives nMM(n) algorithm for problem
- what about recursive?
- well can get to within 2: let T_k be boolean "distance less than or equal to 2^k . Squaring gives T_{k+1} .
- $O(\log n)$ squares for unit length
- what about exact?

Seidel's distance algorithm for unit lengths.

- log-size integers:
 - parities suffice:
 - * square G to get adjacency A', distance D'
 - \cdot if D_{ij} even then $D_{ij} = 2D'_{ij}$
 - if D_{ij} odd then $D_{ij} = 2D'_{ij} 1$
 - For neighbors i, k,
 - $* D_{ij} 1 \le D_{kj} \le D_{ij} + 1$

- * exists $k, D_{kj} = D_{ij} 1$
- Parities
 - * If D_{ij} even, then $D'_{kj} \ge D'_{ij}$ for every neighbor k

* If D_{ij} odd, then $D'_{kj} \leq D'_{ij}$ for every neighbor k, and strict for at least one – Add

- * D_{ij} even iff $S_{ij} = \sum_k D'_{kj} \ge D_{ij}d(i)$
- * D_{ij} odd iff $\sum_k D'_{kj} < D_{ij}d(i)$
- * How determine? find S = AD'
- Result: all distances in $O(M(n) \log n)$ time.

This is **deterministic distance algorithm**. To find paths: Witness product

• example: tripartite one-hop hop case

Modify matrix alg:

- easy case: unique witness
 - multiply column c by c.
 - read off witness identity
- reduction to easy case:
 - Suppose r columns have witness
 - Suppose choose each with prob. p
 - Prob. exactly 1 witness: $rp(1-p)^{r-1} \approx 1/e$
 - Try all values of r
 - Wait, too many.
- Approx
 - Suppose p = 2/r
 - Then prob. exactly 1 is $\approx 2/e^2$
 - So anything in range $1/r \dots 1/2r$ will do.
 - So try p all powers of 2.
 - suppose $2^k \le r \le 2^{k+1}$
 - choose each column with probability 2^{-k} .
 - prob. exactly one witness: $r \cdot 2^{-k} (1 2^{-k})^{r-1} \ge (1/2)(1/e^2)$
 - so try $\log n$ distinct powers of 2, each $O(\log n)$ times
- So, can find shortest paths by doing one Matrix mul for each distance value

-n matrix muls

generalize to more distances:

- distances now known
- for each node, dest, find neighbor with distance one less
- boolean matrix R of "distance is k 1"
- boolean witness product of RA
- Mod 3:
 - Recall some neighbor distance down by one
 - so compute distances mod 3.
 - suppose $D_{ij} = 1 \mod 3$
 - then look for k neighbor of i such that $D_{kj} = 0 \mod 3$
 - $\text{ let } D_{ij}^{(s)} = 1 \text{ iff } D_{ij} = s \text{ mod } 3$
 - than $AD^{(s)}$ has ij = 1 iff a neighbor k of i has $D_{kj}^{(s)}$
 - so, witness matrix mul!

Parallel Algorithms

PRAM

- P processors, each with a RAM, local registers
- global memory of M locations
- each processor can in one step do a RAM op or read/write to one global memory location
- synchronous parallel steps
- various conflict resolutions (CREW, EREW, CRCW)
- not realistic, but explores "degree of parallelism"

Randomization in parallel:

- load balancing
- symmetry breaking
- isolating solutions

Classes:

• NC: poly processor, polylog steps

- RNC: with randomization. polylog runtime, monte carlo
- ZNC: las vegas NC
- immune to choice of conflict resolution

Practical observations:

- very little can be done in $o(\log n)$ with poly processors
- lots can be done in $\Theta(\log n)$
- often concerned about *work* which is processors times time
- algorithm is "optimal" if work equals best sequential

Basic operations

- and, or
- counting ones
- parallel prefix

Addition

- Prefix sum over "kill", "propogate", "carry" operations
- handles *n*-bit numbers in $O(\log n)$ time
- multiplication as n^2 additions (better methods exist)

Sorting

Quicksort in parallel:

- *n* processors
- each takes one item, compares to splitter
- count number of predecessors less than splitter
- determines location of item in split
- total time $O(\log n)$
- combine: $O(\log n)$ per layer with n processors
- problem: $\Omega(\log^2 n)$ time bound
- problem: $n \log^2 n$ work

Perfect Matching

We focus on bipartite; book does general case. Last time, saw detection algorithm in \mathcal{RNC} :

- Tutte matrix
- Sumbolic determinant nonzero iff PM
- assign random values in $1, \ldots, 2m$
- Matrix Mul, Determinant in \mathcal{NC}

How about finding one?

- If unique, no problem
- Since only one nozero term, ok to replace each entry by a 1.
- Remove each edge, see if still PM in parallel
- multiplies processors by m
- but still \mathcal{NC}

Idea:

- make unique minimum weight perfect matching
- find it

Isolating lemma: [MVV]

- Family of distinct sets over x_1, \ldots, x_m
- assign random weights in $1, \ldots, 2m$
- $Pr(unique min-weight set) \ge 1/2$
- Odd: no dependence on number of sets!
- (of course $< 2^m$)

Proof:

- Fix item x_i
- Y is min-value sets containing x_i
- N is min-value sets not containing x_i
- true min-sets are either those in Y or in N
- how decide? Value of x_i

- For $x_i = -\infty$, min-sets are Y
- For $x_i = +\infty$, min-sets are N
- As increase from $-\infty$ to ∞ , single transition value when both X and Y are min-weight
- If only Y min-weight, then x_i in every min-set
- If only X min-weight, then x_i in no min-set
- If both min-weight, x_i is *ambiguous*
- Suppose no x_i ambiguous. Then min-weight set unique!
- Exactly one value for x_i makes it ambiguous given remainder
- So Pr(ambiguous) = 1/2m
- So Pr(any ambiguous) < m/2m = 1/2

Usage:

- Consider tutte matrix A
- Assign random value 2^{w_i} to x_i , with $w_i \in 1, \ldots, 2m$
- Weight of matching is $2^{\sum w_i}$
- Let W be minimum sum
- Unique w/pr 1/2
- If so, determinant is odd multiple of 2^W
- Try removing edges one at a time
- Edge in PM iff new determinant/ 2^W is even.
- Big numbers? No problem: values have poly number of bits

NC algorithm open.

For exact matching, P algorithm open.