Midterm out today.
Collaborations.

## Shortest Paths

classical shortest paths.

- dijkstra's algorithm
- floyd's algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by "funny multiplication."
- huge integer implementation
- base- $(n+1)$ integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2 .
- gives $n M M(n)$ algorithm for problem
- what about recursive?
- well can get to within 2: let $T_{k}$ be boolean "distance less than or equal to $2^{k}$. Squaring gives $T_{k+1}$.
- $O(\log n)$ squares for unit length
- what about exact?

Seidel's distance algorithm for unit lengths.

- log-size integers:
- parities suffice:
* square $G$ to get adjacency $A^{\prime}$, distance $D^{\prime}$
- if $D_{i j}$ even then $D_{i j}=2 D_{i j}^{\prime}$
- if $D_{i j}$ odd then $D_{i j}=2 D_{i j}^{\prime}-1$
- For neighbors $i, k$,

$$
* D_{i j}-1 \leq D_{k j} \leq D_{i j}+1
$$

* exists $k, D_{k j}=D_{i j}-1$
- Parities
* If $D_{i j}$ even, then $D_{k j}^{\prime} \geq D_{i j}^{\prime}$ for every neighbor $k$
* If $D_{i j}$ odd, then $D_{k j}^{\prime} \leq D_{i j}^{\prime}$ for every neighbor $k$, and strict for at least one
- Add
* $D_{i j}$ even iff $S_{i j}=\sum_{k} D_{k j}^{\prime} \geq D_{i j} d(i)$
* $D_{i j}$ odd iff $\sum_{k} D_{k j}^{\prime}<D_{i j} d(i)$
* How determine? find $S=A D^{\prime}$
- Result: all distances in $O(M(n) \log n)$ time.


## This is deterministic distance algorithm.

To find paths: Witness product

- example: tripartite one-hop hop case

Modify matrix alg:

- easy case: unique witness
- multiply column $c$ by $c$.
- read off witness identity
- reduction to easy case:
- Suppose $r$ columns have witness
- Suppose choose each with prob. $p$
- Prob. exactly 1 witness: $r p(1-p)^{r-1} \approx 1 / e$
- Try all values of $r$
- Wait, too many.
- Approx
- Suppose $p=2 / r$
- Then prob. exactly 1 is $\approx 2 / e^{2}$
- So anything in range $1 / r \ldots 1 / 2 r$ will do.
- So try $p$ all powers of 2 .
- suppose $2^{k} \leq r \leq 2^{k+1}$
- choose each column with probability $2^{-k}$.
- prob. exactly one witness: $r \cdot 2^{-k}\left(1-2^{-k}\right)^{r-1} \geq(1 / 2)\left(1 / e^{2}\right)$
- so try $\log n$ distinct powers of 2 , each $O(\log n)$ times
- So, can find shortest paths by doing one Matrix mul for each distance value
- $n$ matrix muls
generalize to more distances:
- distances now known
- for each node, dest, find neighbor with distance one less
- boolean matrix $R$ of "distance is $k-1$ "
- boolean witness product of $R A$
- Mod 3:
- Recall some neighbor distance down by one
- so compute distances mod 3 .
- suppose $D_{i j}=1 \bmod 3$
- then look for $k$ neighbor of $i$ such that $D_{k j}=0 \bmod 3$
$-\operatorname{let} D_{i j}^{(s)}=1$ iff $D_{i j}=s \bmod 3$
- than $A D^{(s)}$ has $i j=1 \mathrm{iff}$ a neighbor $k$ of $i$ has $D_{k j}^{(s)}$
- so, witness matrix mul!


## Parallel Algorithms

## PRAM

- $P$ processors, each with a RAM, local registers
- global memory of $M$ locations
- each processor can in one step do a RAM op or read/write to one global memory location
- synchronous parallel steps
- various conflict resolutions (CREW, EREW, CRCW)
- not realistic, but explores "degree of parallelism"

Randomization in parallel:

- load balancing
- symmetry breaking
- isolating solutions

Classes:

- NC: poly processor, polylog steps
- RNC: with randomization. polylog runtime, monte carlo
- ZNC: las vegas NC
- immune to choice of conflict resolution

Practical observations:

- very little can be done in $o(\log n)$ with poly processors
- lots can be done in $\Theta(\log n)$
- often concerned about work which is processors times time
- algorithm is "optimal" if work equals best sequential

Basic operations

- and, or
- counting ones
- parallel prefix


## Addition

- Prefix sum over "kill", "propogate", "carry" operations
- handles $n$-bit numbers in $O(\log n)$ time
- multiplication as $n^{2}$ additions (better methods exist)


## Sorting

Quicksort in parallel:

- $n$ processors
- each takes one item, compares to splitter
- count number of predecessors less than splitter
- determines location of item in split
- total time $O(\log n)$
- combine: $O(\log n)$ per layer with $n$ processors
- problem: $\Omega\left(\log ^{2} n\right)$ time bound
- problem: $n \log ^{2} n$ work


## Perfect Matching

We focus on bipartite; book does general case.
Last time, saw detection algorithm in $\mathcal{R N C}$ :

- Tutte matrix
- Sumbolic determinant nonzero iff PM
- assign random values in $1, \ldots, 2 m$
- Matrix Mul, Determinant in $\mathcal{N C}$

How about finding one?

- If unique, no problem
- Since only one nozero term, ok to replace each entry by a 1 .
- Remove each edge, see if still PM in parallel
- multiplies processors by $m$
- but still $\mathcal{N C}$

Idea:

- make unique minimum weight perfect matching
- find it

Isolating lemma: [MVV]

- Family of distinct sets over $x_{1}, \ldots, x_{m}$
- assign random weights in $1, \ldots, 2 m$
- $\operatorname{Pr}($ unique min-weight set $) \geq 1 / 2$
- Odd: no dependence on number of sets!
- (of course $<2^{m}$ )

Proof:

- Fix item $x_{i}$
- $Y$ is min-value sets containing $x_{i}$
- $N$ is min-value sets not containing $x_{i}$
- true min-sets are either those in $Y$ or in $N$
- how decide? Value of $x_{i}$
- For $x_{i}=-\infty$, min-sets are $Y$
- For $x_{i}=+\infty$, min-sets are $N$
- As increase from $-\infty$ to $\infty$, single transition value when both $X$ and $Y$ are min-weight
- If only $Y$ min-weight, then $x_{i}$ in every min-set
- If only $X$ min-weight, then $x_{i}$ in no min-set
- If both min-weight, $x_{i}$ is ambiguous
- Suppose no $x_{i}$ ambiguous. Then min-weight set unique!
- Exactly one value for $x_{i}$ makes it ambiguous given remainder
- So $\operatorname{Pr}($ ambiguous $)=1 / 2 m$
- So $\operatorname{Pr}$ (any ambiguous) $<m / 2 m=1 / 2$

Usage:

- Consider tutte matrix $A$
- Assign random value $2^{w_{i}}$ to $x_{i}$, with $w_{i} \in 1, \ldots, 2 m$
- Weight of matching is $2^{\sum w_{i}}$
- Let $W$ be minimum sum
- Unique w/pr $1 / 2$
- If so, determinant is odd multiple of $2^{W}$
- Try removing edges one at a time
- Edge in PM iff new determinant $/ 2^{W}$ is even.
- Big numbers? No problem: values have poly number of bits
$N C$ algorithm open.
For exact matching, $P$ algorithm open.

