
Parallel Algorithms

PRAM

•	 P processors, each with a RAM, local registers

•	 global memory of M locations

•	 each processor can in one step do a RAM op or read/write to one global memory
location

•	 synchronous parallel steps

•	 various conflict resolutions (CREW, EREW, CRCW)

• not realistic, but explores “degree of parallelism”

Randomization in parallel:

•	 load balancing

•	 symmetry breaking

• isolating solutions

Classes:

•	 NC: poly processor, polylog steps

•	 RNC: with randomization. polylog runtime, monte carlo

•	 ZNC: las vegas NC

• immune to choice of R/W conflict resolution

Practical observations:

•	 very little can be done in o(log n) with poly processors (binary tree of data aggregation
usually needed)

• lots can be done in Θ(log n)

• often concerned about work which is processors times time

• algorithm is “optimal” if work equals best sequential

Basic operations

•	 and, or

•	 counting ones

•	 parallel prefix

1

Addition

• Prefix sum over “kill”, “propogate”, “carry” operations

• handles n-bit numbers in O(log n) time

• multiplication as n2 additions (better methods exist)

Sorting

Quicksort in parallel:

• n processors

• each takes one item, compares to splitter

• count number of predecessors less than splitter

• determines location of item in split

• total time O(log n)

• combine: O(log n) per layer with n processors

• problem: Ω(log2 n) time bound

• problem: n log2 n work

• tweak (using
√

n splitters) to get optimal

Perfect Matching

We focus on bipartite; book does general case.
Last time, saw detection algorithm in RNC:

Tutte matrix •

Sumbolic determinant nonzero iff PM •

• assign random values in 1, . . . , 2m

• Matrix Mul, Determinant in NC

How about finding one?

• If unique, no problem

• Since only one nozero term, ok to replace each entry by a 1.

• Remove each edge, see if still PM in parallel

• multiplies processors by m

2

• but still N C

Idea:

•	 make unique minimum weight perfect matching

find it
•

Isolating lemma: [MVV]

•	 Family of distinct sets over x1, . . . , xm

•	 assign random weights in 1, . . . , 2m

•	 Pr(unique min-weight set)≥ 1/2

•	 Odd: no dependence on number of sets!

• (of course < 2m)

Proof:

•	 Fix item xi

•	 Y is min-value sets containing xi

•	 N is min-value sets not containing xi

true min-sets are either those in Y or in N
•

•	 how decide? Value of xi

•	 For xi = −∞, min-sets are Y

•	 For xi = +∞, min-sets are N

•	 As increase from −∞ to ∞, single transition value when both X and Y are min-weight

•	 If only Y min-weight, then xi in every min-set

•	 If only X min-weight, then xi in no min-set

•	 If both min-weight, xi is ambiguous

•	 Suppose no xi ambiguous. Then min-weight set unique!

•	 Exactly one value for xi makes it ambiguous given remainder

•	 So Pr(ambiguous)= 1/2m

• So Pr(any ambiguous)< m/2m = 1/2

Usage:

3

�

Consider tutte matrix A•

•	 Assign random value 2wi to xi, with wi ∈ 1, . . . , 2m

wi •	 Weight of matching is 2

Let W be minimum sum
•

•	 Unique w/pr 1/2

•	 If so, determinant is odd multiple of 2W

•	 Try removing edges one at a time

•	 Edge in PM iff new determinant/2W is even.

•	 Big numbers? No problem: values have poly number of bits

NC algorithm open.

For exact matching, P algorithm open.

Maximal independent set

trivial sequential algorithm

•	 inherently sequential

•	 from node point of view: each thinks can join MIS if others stay out

• randomization breaks this symmetry

Randomized idea

•	 each node joins with some probability

•	 all neighbors excluded

•	 many nodes join

• few phases needed

Algorithm:

•	 all degree 0 nodes join

•	 node v joins with probability 1/2d(v)

•	 if edge (u, v) has both ends marked, unmark lower degree vertex

•	 put all marked nodes in IS

•	 delete all neighbors

4

Intuition: d-regular graph

• vertex vanishes if it or neighbor gets chosen

• mark with probability 1/2d

• prob (no neighbor marked) is (1 − 1/2d)d, constant

• so const prob. of neighbor of v marked—destroys v

• what about unmarking of v’s neighbor?

• prob(unmarking forced) only constant as argued above.

• So just changes constants

• const fraction of nodes vanish: O(log n) phases

• Implementing a phase trivial in O(log n).

Prob chosen for IS, given marked, exceeds 1/2

• suppose w marked. only unmarked if higher degree neighbor marked

• higher degree neighbor marked with prob. ≤ 1/2d(w)

• only d(w) neighbors

• prob. any superior neighbor marked at most 1/2.

For general case, define good vertices

• good: at least 1/3 neighbors have lower degree

• prob. no neighbor of good marked ≤ (1 − 1/2d(v))d(v)/3 ≤ e−1/6 .

• So some neighbor marked with prob. 1 − e−1/6

• Stays marked with prob. 1/2

• deduce prob. good vertex killed exceeds (1 − e−1/6)/2

• Problem: perhaps only one good vertex?

Good edges

• any edge with a good neighbor

• has const prob. to vanish

• show half edges good

• deduce O(log n) iterations.

5

� �

�

�

Proof

•	 Let VB be bad vertices; we count edges with both ends in VB .

•	 direct edges from lower to higher degree di is indegree, do outdegree

•	 if v bad, then di(v) ≤ d(v)/3

deduce
• � 1 � 1 �
di(v) ≤ d(v) = (di(v) + do(v))

3 3
VB VB VB

•	 so di(v) ≤ 1 do(v)VB 2 VB

•	 which means indegree can only “catch” half of outdegree; other half must go to good
vertices.

•	 more carefully,

1 –	 do(v) − di(v) ≥
3 (d(v)) = 1

3 (do(v) + di(v)).

–	 Let VG, VB be good, bad vertices

–	 degree of bad vertices is

2e(VB , VB) + e(VB , VG) + e(VG, VB) = do(v) + di(v)
v∈VB

3 (do(v) − di(v))≤

=	 3(e(VB , VG) − e(VG, VB))

3(e(VB , VG) + e(VG, VB)≤

Deduce e(VB , VB) ≤ e(VB , VG) + e(VG, VB). result follows.

Derandomization:

•	 Analysis focuses on edges,

•	 so unsurprisingly, pairwise independence sufficient

•	 not immediately obvious, but again consider d-uniform case

•	 prob vertex marked 1/2d

•	 neighbors 1, . . . , d in increasing degree order

•	 Let Ei be event that i is marked.

•	 Let E � be Ei but no Ej for j < i i

•	 Ai event no neighbor of i chosen

6

� �

�

�

�

� �

• Then prob eliminate v at least

Pr[Ei
� ∩ Ai] = Pr[E �] Pr[Ai | E �]i i

≥ Pr[E �] Pr[Ai]i

• Wait: show Pr[Ai E �] ≥ Pr[Ai]i|

– true if independent

– measure Pr[¬Ai | E �] Pr[Ew | E �] (sum over neighbors w of i)ii ≤

– measure

Pr[Ew | E �] =
Pr[Ew ∩ E �]

i Pr[E �]i
]Pr[(Ew ∩ ¬E1 ∩ · · ·) ∩ Ei

=
Pr[(¬E1 ∩ · · ·) ∩ Ei]

Ei]
=

Pr[Ew ∩ ¬E1 ∩ · · · |
Ei]Pr[¬E1 ∩ · · · |

Pr[Ew | Ei]≤
1 −

�
j≤i Pr[Ej Ei]|

= Θ(Pr[Ew])

(last step assumes d-regular so only d neighbors with odds 1/2d)

• But expected marked neighbors 1/2, so by Markov Pr[Ai] > 1/2

• so prob eliminate v exceeds Pr[E �] = Pr[∪Ei]i

• lower bound as Pr[Ei] Pr[Ei ∩ Ej] = 1/2 − d(d − 1)/8d2 > 1/4−

• so 1/2d prob. v marked but no neighbor marked, so v chosen

• Generate pairwise independent with O(log n) bits

• try all polynomial seeds in parallel

one works •

• gives deterministic NC algorithm

with care, O(m) processors and O(log n) time (randomized)
LFMIS P-complete.

7

