
Parallel Algorithms 

PRAM 

•	 P processors, each with a RAM, local registers 

•	 global memory of M locations 

•	 each processor can in one step do a RAM op or read/write to one global memory 
location 

•	 synchronous parallel steps 

•	 various conflict resolutions (CREW, EREW, CRCW) 

• not realistic, but explores “degree of parallelism” 

Randomization in parallel: 

•	 load balancing 

•	 symmetry breaking 

• isolating solutions 

Classes: 

•	 NC: poly processor, polylog steps 

•	 RNC: with randomization. polylog runtime, monte carlo 

•	 ZNC: las vegas NC 

• immune to choice of R/W conflict resolution 

Practical observations: 

•	 very little can be done in o(log n) with poly processors (binary tree of data aggregation 
usually needed) 

• lots can be done in Θ(log n)


• often concerned about work which is processors times time


• algorithm is “optimal” if work equals best sequential 

Basic operations 

•	 and, or 

•	 counting ones 

•	 parallel prefix 
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Addition 

• Prefix sum over “kill”, “propogate”, “carry” operations 

• handles n-bit numbers in O(log n) time 

• multiplication as n2 additions (better methods exist) 

Sorting 

Quicksort in parallel: 

• n processors 

• each takes one item, compares to splitter 

• count number of predecessors less than splitter 

• determines location of item in split 

• total time O(log n) 

• combine: O(log n) per layer with n processors 

• problem: Ω(log2 n) time bound 

• problem: n log2 n work 

• tweak (using 
√

n splitters) to get optimal 

Perfect Matching 

We focus on bipartite; book does general case. 
Last time, saw detection algorithm in RNC: 

Tutte matrix • 

Sumbolic determinant nonzero iff PM • 

• assign random values in 1, . . . , 2m 

• Matrix Mul, Determinant in NC 

How about finding one? 

• If unique, no problem 

• Since only one nozero term, ok to replace each entry by a 1. 

• Remove each edge, see if still PM in parallel 

• multiplies processors by m 
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• but still N C 

Idea: 

•	 make unique minimum weight perfect matching


find it
• 

Isolating lemma: [MVV] 

•	 Family of distinct sets over x1, . . . , xm 

•	 assign random weights in 1, . . . , 2m 

•	 Pr(unique min-weight set)≥ 1/2 

•	 Odd: no dependence on number of sets! 

• (of course < 2m) 

Proof: 

•	 Fix item xi 

•	 Y is min-value sets containing xi 

•	 N is min-value sets not containing xi


true min-sets are either those in Y or in N
• 

•	 how decide? Value of xi 

•	 For xi = −∞, min-sets are Y 

•	 For xi = +∞, min-sets are N 

•	 As increase from −∞ to ∞, single transition value when both X and Y are min-weight 

•	 If only Y min-weight, then xi in every min-set 

•	 If only X min-weight, then xi in no min-set 

•	 If both min-weight, xi is ambiguous 

•	 Suppose no xi ambiguous. Then min-weight set unique! 

•	 Exactly one value for xi makes it ambiguous given remainder 

•	 So Pr(ambiguous)= 1/2m 

• So Pr(any ambiguous)< m/2m = 1/2 

Usage: 
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Consider tutte matrix A• 

•	 Assign random value 2wi to xi, with wi ∈ 1, . . . , 2m 

wi •	 Weight of matching is 2


Let W be minimum sum
• 

•	 Unique w/pr 1/2 

•	 If so, determinant is odd multiple of 2W 

•	 Try removing edges one at a time 

•	 Edge in PM iff new determinant/2W is even. 

•	 Big numbers? No problem: values have poly number of bits 

NC algorithm open.

For exact matching, P algorithm open.


Maximal independent set 

trivial sequential algorithm 

•	 inherently sequential 

•	 from node point of view: each thinks can join MIS if others stay out 

• randomization breaks this symmetry 

Randomized idea 

•	 each node joins with some probability 

•	 all neighbors excluded 

•	 many nodes join 

• few phases needed 

Algorithm: 

•	 all degree 0 nodes join 

•	 node v joins with probability 1/2d(v) 

•	 if edge (u, v) has both ends marked, unmark lower degree vertex 

•	 put all marked nodes in IS 

•	 delete all neighbors 
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Intuition: d-regular graph 

• vertex vanishes if it or neighbor gets chosen 

• mark with probability 1/2d 

• prob (no neighbor marked) is (1 − 1/2d)d, constant 

• so const prob. of neighbor of v marked—destroys v 

• what about unmarking of v’s neighbor? 

• prob(unmarking forced) only constant as argued above. 

• So just changes constants 

• const fraction of nodes vanish: O(log n) phases 

• Implementing a phase trivial in O(log n). 

Prob chosen for IS, given marked, exceeds 1/2 

• suppose w marked. only unmarked if higher degree neighbor marked 

• higher degree neighbor marked with prob. ≤ 1/2d(w)


• only d(w) neighbors


• prob. any superior neighbor marked at most 1/2. 

For general case, define good vertices 

• good: at least 1/3 neighbors have lower degree 

• prob. no neighbor of good marked ≤ (1 − 1/2d(v))d(v)/3 ≤ e−1/6 . 

• So some neighbor marked with prob. 1 − e−1/6 

• Stays marked with prob. 1/2 

• deduce prob. good vertex killed exceeds (1 − e−1/6)/2 

• Problem: perhaps only one good vertex? 

Good edges 

• any edge with a good neighbor 

• has const prob. to vanish 

• show half edges good 

• deduce O(log n) iterations. 
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Proof 

•	 Let VB be bad vertices; we count edges with both ends in VB . 

•	 direct edges from lower to higher degree di is indegree, do outdegree 

•	 if v bad, then di(v) ≤ d(v)/3


deduce
• � 1 � 1 � 
di(v) ≤ d(v) = (di(v) + do(v))

3 3 
VB VB VB 

•	 so di(v) ≤ 1 do(v)VB 2 VB 

•	 which means indegree can only “catch” half of outdegree; other half must go to good 
vertices. 

•	 more carefully, 

1 –	 do(v) − di(v) ≥ 
3 (d(v)) = 1 

3 (do(v) + di(v)). 

–	 Let VG, VB be good, bad vertices 

–	 degree of bad vertices is 

2e(VB , VB ) + e(VB , VG) + e(VG, VB ) = do(v) + di(v) 
v∈VB 

3 (do(v) − di(v))≤ 

=	 3(e(VB , VG) − e(VG, VB )) 

3(e(VB , VG) + e(VG, VB )≤ 

Deduce e(VB , VB ) ≤ e(VB , VG) + e(VG, VB ). result follows. 

Derandomization: 

•	 Analysis focuses on edges, 

•	 so unsurprisingly, pairwise independence sufficient 

•	 not immediately obvious, but again consider d-uniform case 

•	 prob vertex marked 1/2d 

•	 neighbors 1, . . . , d in increasing degree order 

•	 Let Ei be event that i is marked. 

•	 Let E � be Ei but no Ej for j < i i 

•	 Ai event no neighbor of i chosen 
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• Then prob eliminate v at least 

Pr[Ei
� ∩ Ai] = Pr[E �] Pr[Ai | E �]i i

≥ Pr[E �] Pr[Ai]i 

• Wait: show Pr[Ai E �] ≥ Pr[Ai]i| 

– true if independent 

– measure Pr[¬Ai | E �] Pr[Ew | E �] (sum over neighbors w of i)ii ≤ 

– measure 

Pr[Ew | E �] = 
Pr[Ew ∩ E �] 

i Pr[E �]i
]Pr[(Ew ∩ ¬E1 ∩ · · · ) ∩ Ei

= 
Pr[(¬E1 ∩ · · · ) ∩ Ei] 

Ei] 
= 

Pr[Ew ∩ ¬E1 ∩ · · · |
Ei]Pr[¬E1 ∩ · · · |

Pr[Ew | Ei]≤ 
1 − 

� 
j≤i Pr[Ej Ei]| 

= Θ(Pr[Ew ]) 

(last step assumes d-regular so only d neighbors with odds 1/2d) 

• But expected marked neighbors 1/2, so by Markov Pr[Ai] > 1/2 

• so prob eliminate v exceeds Pr[E �] = Pr[∪Ei]i

• lower bound as Pr[Ei] Pr[Ei ∩ Ej ] = 1/2 − d(d − 1)/8d2 > 1/4− 

• so 1/2d prob. v marked but no neighbor marked, so v chosen 

• Generate pairwise independent with O(log n) bits 

• try all polynomial seeds in parallel 

one works • 

• gives deterministic NC algorithm 

with care, O(m) processors and O(log n) time (randomized) 
LFMIS P-complete. 
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