Parallel Algorithms

PRAM

- P processors, each with a RAM, local registers
- global memory of M locations
- each processor can in one step do a RAM op or read/write to one global memory location
- synchronous parallel steps
- various conflict resolutions (CREW, EREW, CRCW)
- not realistic, but explores "degree of parallelism"

Randomization in parallel:

- load balancing
- symmetry breaking
- isolating solutions

Classes:

- NC: poly processor, polylog steps
- RNC: with randomization. polylog runtime, monte carlo
- ZNC: las vegas NC
- immune to choice of R/W conflict resolution

Practical observations:

- very little can be done in $o(\log n)$ with poly processors (binary tree of data aggregation usually needed)
- lots can be done in $\Theta(\log n)$
- often concerned about *work* which is processors times time
- algorithm is "optimal" if work equals best sequential

Basic operations

- and, or
- counting ones
- parallel prefix

Addition

- Prefix sum over "kill", "propogate", "carry" operations
- handles *n*-bit numbers in $O(\log n)$ time
- multiplication as n^2 additions (better methods exist)

Sorting

Quicksort in parallel:

- *n* processors
- each takes one item, compares to splitter
- count number of predecessors less than splitter
- determines location of item in split
- total time $O(\log n)$
- combine: $O(\log n)$ per layer with n processors
- problem: $\Omega(\log^2 n)$ time bound
- problem: $n \log^2 n$ work
- tweak (using \sqrt{n} splitters) to get optimal

Perfect Matching

We focus on bipartite; book does general case. Last time, saw detection algorithm in \mathcal{RNC} :

- Tutte matrix
- Sumbolic determinant nonzero iff PM
- assign random values in $1, \ldots, 2m$
- Matrix Mul, Determinant in \mathcal{NC}

How about finding one?

- If unique, no problem
- Since only one nozero term, ok to replace each entry by a 1.
- Remove each edge, see if still PM in parallel
- multiplies processors by m

• but still \mathcal{NC}

Idea:

- make unique minimum weight perfect matching
- find it

Isolating lemma: [MVV]

- Family of distinct sets over x_1, \ldots, x_m
- assign random weights in $1, \ldots, 2m$
- $Pr(unique min-weight set) \ge 1/2$
- Odd: no dependence on number of sets!
- (of course $< 2^m$)

Proof:

- Fix item x_i
- Y is min-value sets containing x_i
- N is min-value sets not containing x_i
- true min-sets are either those in Y or in N
- how decide? Value of x_i
- For $x_i = -\infty$, min-sets are Y
- For $x_i = +\infty$, min-sets are N
- As increase from $-\infty$ to ∞ , single transition value when both X and Y are min-weight
- If only Y min-weight, then x_i in every min-set
- If only X min-weight, then x_i in no min-set
- If both min-weight, x_i is *ambiguous*
- Suppose no x_i ambiguous. Then min-weight set unique!
- Exactly one value for x_i makes it ambiguous given remainder
- So Pr(ambiguous) = 1/2m
- So Pr(any ambiguous) < m/2m = 1/2

Usage:

- Consider tutte matrix A
- Assign random value 2^{w_i} to x_i , with $w_i \in 1, \ldots, 2m$
- Weight of matching is $2^{\sum w_i}$
- Let W be minimum sum
- Unique w/pr 1/2
- If so, determinant is odd multiple of 2^W
- Try removing edges one at a time
- Edge in PM iff new determinant/ 2^W is even.
- Big numbers? No problem: values have poly number of bits

NC algorithm open. For exact matching, ${\cal P}$ algorithm open.

Maximal independent set

trivial sequential algorithm

- inherently sequential
- from node point of view: each thinks can join MIS if others stay out
- randomization breaks this symmetry

Randomized idea

- each node joins with some probability
- all neighbors excluded
- many nodes join
- few phases needed

Algorithm:

- all degree 0 nodes join
- node v joins with probability 1/2d(v)
- if edge (u, v) has both ends marked, unmark lower degree vertex
- put all marked nodes in IS
- delete all neighbors

Intuition: d-regular graph

- vertex vanishes if it or neighbor gets chosen
- mark with probability 1/2d
- prob (no neighbor marked) is $(1 1/2d)^d$, constant
- so const prob. of neighbor of v marked—destroys v
- what about unmarking of v's neighbor?
- prob(unmarking forced) only constant as argued above.
- So just changes constants
- const fraction of nodes vanish: $O(\log n)$ phases
- Implementing a phase trivial in $O(\log n)$.

Prob chosen for IS, given marked, exceeds 1/2

- suppose w marked. only unmarked if higher degree neighbor marked
- higher degree neighbor marked with prob. $\leq 1/2d(w)$
- only d(w) neighbors
- prob. any superior neighbor marked at most 1/2.

For general case, define good vertices

- good: at least 1/3 neighbors have lower degree
- prob. no neighbor of good marked $\leq (1 1/2d(v))^{d(v)/3} \leq e^{-1/6}$.
- So some neighbor marked with prob. $1 e^{-1/6}$
- Stays marked with prob. 1/2
- deduce prob. good vertex killed exceeds $(1 e^{-1/6})/2$
- Problem: perhaps only one good vertex?

Good edges

- any edge with a good neighbor
- has const prob. to vanish
- show half edges good
- deduce $O(\log n)$ iterations.

Proof

- Let V_B be bad vertices; we count edges with both ends in V_B .
- direct edges from lower to higher degree d_i is indegree, d_o outdegree
- if v bad, then $d_i(v) \le d(v)/3$
- deduce

$$\sum_{V_B} d_i(v) \le \frac{1}{3} \sum_{V_B} d(v) = \frac{1}{3} \sum_{V_B} (d_i(v) + d_o(v))$$

- so $\sum_{V_B} d_i(v) \leq \frac{1}{2} \sum_{V_B} d_o(v)$
- which means indegree can only "catch" half of outdegree; other half must go to good vertices.
- more carefully,

$$- d_o(v) - d_i(v) \ge \frac{1}{3}(d(v)) = \frac{1}{3}(d_o(v) + d_i(v)).$$

- Let V_G, V_B be good, bad vertices
- degree of bad vertices is

$$2e(V_B, V_B) + e(V_B, V_G) + e(V_G, V_B) = \sum_{v \in V_B} d_o(v) + d_i(v)$$

$$\leq 3\sum_{v \in V_B} (d_o(v) - d_i(v))$$

$$= 3(e(V_B, V_G) - e(V_G, V_B))$$

$$\leq 3(e(V_B, V_G) + e(V_G, V_B))$$

Deduce $e(V_B, V_B) \leq e(V_B, V_G) + e(V_G, V_B)$. result follows.

Derandomization:

- Analysis focuses on edges,
- so unsurprisingly, pairwise independence sufficient
- not immediately obvious, but again consider *d*-uniform case
- prob vertex marked 1/2d
- neighbors $1, \ldots, d$ in increasing degree order
- Let E_i be event that *i* is marked.
- Let E'_i be E_i but no E_j for j < i
- A_i event no neighbor of *i* chosen

• Then prob eliminate v at least

$$\sum \Pr[E'_i \cap A_i] = \sum \Pr[E'_i] \Pr[A_i \mid E'_i]$$

$$\geq \sum \Pr[E'_i] \Pr[A_i]$$

- Wait: show $\Pr[A_i \mid E'_i] \ge \Pr[A_i]$
 - true if independent
 - measure $\Pr[\neg A_i \mid E'_i] \leq \sum \Pr[E_w \mid E'_i]$ (sum over neighbors w of i)
 - measure

$$\Pr[E_w \mid E'_i] = \frac{\Pr[E_w \cap E']}{\Pr[E'_i]}$$

$$= \frac{\Pr[(E_w \cap \neg E_1 \cap \cdots) \cap E_i]}{\Pr[(\neg E_1 \cap \cdots) \cap E_i]}$$

$$= \frac{\Pr[E_w \cap \neg E_1 \cap \cdots \mid E_i]}{\Pr[\neg E_1 \cap \cdots \mid E_i]}$$

$$\leq \frac{\Pr[E_w \mid E_i]}{1 - \sum_{j \le i} \Pr[E_j \mid E_i]}$$

$$= \Theta(\Pr[E_w])$$

(last step assumes d-regular so only d neighbors with odds 1/2d)

- But expected marked neighbors 1/2, so by Markov $\Pr[A_i] > 1/2$
- so prob eliminate v exceeds $\sum \Pr[E'_i] = \Pr[\cup E_i]$
- lower bound as $\sum \Pr[E_i] \sum \Pr[E_i \cap E_j] = 1/2 d(d-1)/8d^2 > 1/4$
- so 1/2d prob. v marked but no neighbor marked, so v chosen
- Generate pairwise independent with $O(\log n)$ bits
- try all polynomial seeds in parallel
- one works
- $\bullet\,$ gives deterministic NC algorithm

with care, O(m) processors and $O(\log n)$ time (randomized) LFMIS P-complete.