Maximal independent set

trivial sequential algorithm

- inherently sequential
- from node point of view: each thinks can join MIS if others stay out
- randomization breaks this symmetry

Randomized idea

- each node joins with some probability
- all neighbors excluded
- many nodes join
- few phases needed

Algorithm:

- all degree 0 nodes join
- node v joins with probability $1 / 2 d(v)$
- if edge (u, v) has both ends marked, unmark lower degree vertex
- put all marked nodes in IS
- delete all neighbors

Intuition: d-regular graph

- vertex vanishes if it or neighbor gets chosen
- mark with probability $1 / 2 d$
- prob (no neighbor marked) is $(1-1 / 2 d)^{d}$, constant
- so const prob. of neighbor of v marked-destroys v
- what about unmarking of v 's neighbor?
- prob(unmarking forced) only constant as argued above.
- So just changes constants
- const fraction of nodes vanish: $O(\log n)$ phases
- Implementing a phase trivial in $O(\log n)$.

Idea of staying marked applies to general case: prob. chosen for IS, given marked, exceeds $1 / 2$

- suppose w marked. only unmarked if higher degree neighbor marked
- higher degree neighbor marked with prob. $\leq 1 / 2 d(w)$
- only $d(w)$ neighbors
- prob. any superior neighbor marked at most $1 / 2$.

How about prob. neighbor gets marked?

- Define good vertices: at least $1 / 3$ neighbors have lower degree
- Intuition: good means "high degree"
- Prob. lower degree neighbor marked exceeds $1 / 2 d(v)$
- prob. no neighbor of good marked $\leq(1-1 / 2 d(v))^{d(v) / 3} \leq e^{-1 / 6}$.
- So some neighbor marked with prob. $1-e^{-1 / 6}$
- Stays marked with prob. $1 / 2$
- deduce prob. good vertex killed exceeds $\left(1-e^{-1 / 6}\right) / 2$
- Problem: perhaps only one good vertex?

Good edges

- Idea: since "high degree" vertices killed, means most edges killed
- any edge with a good neighbor
- has const prob. to vanish
- show half edges good
- deduce $O(\log n)$ iterations.

Proof

- Let V_{B} be bad vertices; we count edges with both ends in V_{B}.
- direct edges from lower to higher degree d_{i} is indegree, d_{o} outdegree
- if $v \mathrm{bad}$, then $d_{i}(v) \leq d(v) / 3$
- deduce

$$
\sum_{V_{B}} d_{i}(v) \leq \frac{1}{3} \sum_{V_{B}} d(v)=\frac{1}{3} \sum_{V_{B}}\left(d_{i}(v)+d_{o}(v)\right)
$$

- so $\sum_{V_{B}} d_{i}(v) \leq \frac{1}{2} \sum_{V_{B}} d_{o}(v)$
- which means indegree can only "catch" half of outdegree; other half must go to good vertices.
- more carefully,

$$
-d_{o}(v)-d_{i}(v) \geq \frac{1}{3}(d(v))=\frac{1}{3}\left(d_{o}(v)+d_{i}(v)\right) .
$$

- Let V_{G}, V_{B} be good, bad vertices
- degree of bad vertices is

$$
\begin{aligned}
2 e\left(V_{B}, V_{B}\right)+e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right) & =\sum_{v \in V_{B}} d_{o}(v)+d_{i}(v) \\
& \leq 3 \sum\left(d_{o}(v)-d_{i}(v)\right) \\
& =3\left(e\left(V_{B}, V_{G}\right)-e\left(V_{G}, V_{B}\right)\right) \\
& \leq 3\left(e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right)\right.
\end{aligned}
$$

Deduce $e\left(V_{B}, V_{B}\right) \leq e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right)$. result follows.
Derandomization:

- Analysis focuses on edges,
- so unsurprisingly, pairwise independence sufficient
- prob vertex marked $1 / 2 d$
- neighbors $1, \ldots, d$ in increasing degree order
- Let E_{i} be event that i is marked.
- Let E_{i}^{\prime} be E_{i} but no E_{j} for $j<i$ (makes disjoint events so can add probabilities)
- A_{i} event no neighbor of i chosen
- Then prob eliminate v at least

$$
\begin{aligned}
\sum \operatorname{Pr}\left[E_{i}^{\prime} \cap A_{i}\right] & =\sum \operatorname{Pr}\left[E_{i}^{\prime}\right] \operatorname{Pr}\left[A_{i} \mid E_{i}^{\prime}\right] \\
& \geq \sum \operatorname{Pr}\left[E_{i}^{\prime}\right] \operatorname{Pr}\left[A_{i}\right]
\end{aligned}
$$

(E_{i}^{\prime} just forces some neighbors not marked so increases bound)

- But expected marked neighbors $1 / 2$, so by Markov $\operatorname{Pr}\left[A_{i}\right]>1 / 2$
- so prob eliminate v exceeds $\sum \operatorname{Pr}\left[E_{i}^{\prime}\right]=\operatorname{Pr}\left[\cup E_{i}\right]$
- lower bound as $\sum \operatorname{Pr}\left[E_{i}\right]-\sum \operatorname{Pr}\left[E_{i} \cap E_{j}\right]=1 / 2-d(d-1) / 8 d^{2}>1 / 4$
- so $1 / 2 d$ prob. v marked but no neighbor marked, so v chosen
- Wait: show $\operatorname{Pr}\left[A_{i} \mid E_{i}^{\prime}\right] \geq \operatorname{Pr}\left[A_{i}\right]$
- true if independent
- not obvious for pairwise, but again consider d-uniform case
- measure $\operatorname{Pr}\left[\neg A_{i} \mid E_{i}^{\prime}\right] \leq \sum \operatorname{Pr}\left[E_{w} \mid E_{i}^{\prime}\right]$ (sum over neighbors w of i)
- measure

$$
\begin{array}{rll}
\operatorname{Pr}\left[E_{w} \mid E_{i}^{\prime}\right] & = & \frac{\operatorname{Pr}\left[E_{w} \cap E^{\prime}\right]}{\operatorname{Pr}\left[E_{i}^{\prime}\right]} \\
& = & \frac{\operatorname{Pr}\left[\left(E_{w} \cap \neg E_{1} \cap \cdots\right) \cap E_{i}\right]}{\operatorname{Pr}\left[\left(\neg E_{1} \cap \cdots\right) \cap E_{i}\right]} \\
& = & \frac{\operatorname{Pr}\left[E_{w} \cap \neg E_{1} \cap \cdots \mid E_{i}\right]}{\operatorname{Pr}\left[\neg E_{1} \cap \cdots \mid E_{i}\right]} \\
& \leq & \frac{\operatorname{Pr}\left[E_{w} \mid E_{i}\right]}{1-\sum_{j \leq i} \operatorname{Pr}\left[E_{j} \mid E_{i}\right]} \\
\leq \frac{\operatorname{Pr}\left[E_{w}\right]}{1-d(1 / 2 d)} & \left.2 \operatorname{Pr}\left[E_{w}\right]\right)
\end{array}
$$

(last step assumes d-regular so only d neighbors with odds $1 / 2 d$)

- Generate pairwise independent with $O(\log n)$ bits
- try all polynomial seeds in parallel
- one works
- gives deterministic $N C$ algorithm
with care, $O(m)$ processors and $O(\log n)$ time (randomized) LFMIS P-complete.

Project

Dates

- Classes end $12 / 13$, wednesday
- Final homework due $12 / 12$, tuesday
- Project due 12/8 (MIT restriction)

Options

- Reading project
- Read some hard papers
- Write about them more clearly than original
- graded on delta
- best source: STOC/FOCS/SODA
- Implementation project
- read some randomized algorithms papers,
- implement
- develop interesting test sets
- identify hard cases
- devise heuristics to improve
- In your work:
- use a randomized algorithm in your research;
- write about it

MST

Review Background

- kruskal
- boruvka
- verification

Intuition: "fences" like selection algorithm.
sampling theorem:

- Heavy edges
- pick F with probability p
- get $n / p F$-heavy edges

Recursive algorithm without boruvka:

$$
T(m, n)=T(m / 2, n)+O(m)+T(2 n, n)=O(m+n \log n)
$$

(sloppy on expectation on $T(2 n, n)$)
Recursive algorithm with 3 boruvka steps:

$$
\begin{aligned}
T(m, n) & =T(m / 2, n / 8)+c_{1}(m+n)+T(n / 4, n / 8) \\
& \leq c(m / 2+n / 8)+c_{1}(m+n)+c(n / 4+n / 8) \\
& =\left(c / 2+c_{1}\right) m+\left(c / 8+c_{1}+c / 4+c / 8\right) n \\
& =\left(c / 2+c_{1}\right)(m+n)
\end{aligned}
$$

so set $c=2 c_{1}$ (not sloppy expectation thanks to linearity).
Notes:

- Chazelle $m \log \alpha(m, n)$ via relaxed heap
- Ramachandran and Peti optimal deterministic algorithm (runtime unknown)
- open questions.

Minimum Cut

deterministic algorithms

- Max-flow
- Gabow

Min-cut implementation

- data structure for contractions
- alternative view-permutations.
- deterministic leaf algo

Recursion:

$$
\begin{array}{rcc}
p_{k+1} & = & p_{k}-\frac{1}{4} p_{k}^{2} \\
q_{k} & = & 4 / p_{k}+1 \\
q_{k+1} & =q_{k}+1+1 / q_{k} &
\end{array}
$$

