
Maximal independent set

trivial sequential algorithm

• inherently sequential

• from node point of view: each thinks can join MIS if others stay out

• randomization breaks this symmetry

Randomized idea

• each node joins with some probability

• all neighbors excluded

• many nodes join

• few phases needed

Algorithm:

• all degree 0 nodes join

• node v joins with probability 1/2d(v)

• if edge (u, v) has both ends marked, unmark lower degree vertex

• put all marked nodes in IS

• delete all neighbors

Intuition: d-regular graph

• vertex vanishes if it or neighbor gets chosen

• mark with probability 1/2d

• prob (no neighbor marked) is (1 − 1/2d)d, constant

• so const prob. of neighbor of v marked—destroys v

• what about unmarking of v’s neighbor?

• prob(unmarking forced) only constant as argued above.

• So just changes constants

• const fraction of nodes vanish: O(log n) phases

• Implementing a phase trivial in O(log n).

Idea of staying marked applies to general case: prob. chosen for IS, given marked, exceeds

1

1/2

� �

•	 suppose w marked. only unmarked if higher degree neighbor marked

• higher degree neighbor marked with prob. ≤ 1/2d(w)

• only d(w) neighbors

• prob. any superior neighbor marked at most 1/2.

How about prob. neighbor gets marked?

•	 Define good vertices: at least 1/3 neighbors have lower degree

•	 Intuition: good means “high degree”

•	 Prob. lower degree neighbor marked exceeds 1/2d(v)

•	 prob. no neighbor of good marked ≤ (1 − 1/2d(v))d(v)/3 ≤ e−1/6 .

•	 So some neighbor marked with prob. 1 − e−1/6

•	 Stays marked with prob. 1/2

•	 deduce prob. good vertex killed exceeds (1 − e−1/6)/2

• Problem: perhaps only one good vertex?

Good edges

•	 Idea: since “high degree” vertices killed, means most edges killed

•	 any edge with a good neighbor

•	 has const prob. to vanish

•	 show half edges good

• deduce O(log n) iterations.

Proof

•	 Let VB be bad vertices; we count edges with both ends in VB .

•	 direct edges from lower to higher degree di is indegree, do outdegree

•	 if v bad, then di(v) ≤ d(v)/3

deduce
• � 1 � 1 �
di(v) ≤ d(v) = (di(v) + do(v))

3 3
VB VB VB

•	 so di(v) ≤ 1 do(v)VB 2 VB

2

�

�

� �

�

�

� �

• which means indegree can only “catch” half of outdegree; other half must go to good

vertices.

• more carefully,

1 – do(v) − di(v) ≥
3 (d(v)) = 1

3 (do(v) + di(v)).

– Let VG, VB be good, bad vertices

– degree of bad vertices is

2e(VB , VB) + e(VB , VG) + e(VG, VB) = do(v) + di(v)
v∈VB

3 (do(v) − di(v))≤

= 3(e(VB , VG) − e(VG, VB))

3(e(VB , VG) + e(VG, VB)≤

Deduce e(VB , VB) ≤ e(VB , VG) + e(VG, VB). result follows.

Derandomization:

• Analysis focuses on edges,

• so unsurprisingly, pairwise independence sufficient

• prob vertex marked 1/2d

• neighbors 1, . . . , d in increasing degree order

• Let Ei be event that i is marked.

• Let E � be Ei but no Ej for j < i (makes disjoint events so can add probabilities) i

• Ai event no neighbor of i chosen

• Then prob eliminate v at least

Pr[Ei
� ∩ Ai] = Pr[E �] Pr[Ai | E �]i i

≥ Pr[E �] Pr[Ai]i

(E � just forces some neighbors not marked so increases bound) i

• But expected marked neighbors 1/2, so by Markov Pr[Ai] > 1/2

• so prob eliminate v exceeds Pr[E �] = Pr[∪Ei]i

• lower bound as Pr[Ei] Pr[Ei ∩ Ej] = 1/2 − d(d− 1)/8d2 > 1/4−

• so 1/2d prob. v marked but no neighbor marked, so v chosen

• Wait: show Pr[Ai E �] ≥ Pr[Ai]i|

3

�

–	 true if independent

–	 not obvious for pairwise, but again consider d-uniform case

–	 measure Pr[¬Ai | E �] Pr[Ew | E �] (sum over neighbors w of i)ii	 ≤

–	 measure

Pr[Ew | E �] =
Pr[Ew ∩ E �]

i Pr[E �]i
]Pr[(Ew ∩ ¬E1 ∩ · · ·) ∩ Ei

=
Pr[(¬E1 ∩ · · ·) ∩ Ei]

Ei]
=

Pr[Ew ∩ ¬E1 ∩ · · · |
Ei]Pr[¬E1 ∩ · · · |

Pr[Ew | Ei]≤
1 −

�
j≤i Pr[Ej Ei]|

≤ Pr[Ew]
1−d(1/2d)

= 2 Pr[Ew])

(last step assumes d-regular so only d neighbors with odds 1/2d)

•	 Generate pairwise independent with O(log n) bits

•	 try all polynomial seeds in parallel

one works
•

•	 gives deterministic NC algorithm

with care, O(m) processors and O(log n) time (randomized)
LFMIS P-complete.

Project

Dates

•	 Classes end 12/13, wednesday

•	 Final homework due 12/12, tuesday

• Project due 12/8 (MIT restriction)

Options

•	 Reading project

–	 Read some hard papers

–	 Write about them more clearly than original

–	 graded on delta

4

– best source: STOC/FOCS/SODA

• Implementation project

– read some randomized algorithms papers,

– implement

– develop interesting test sets

– identify hard cases

– devise heuristics to improve

• In your work:

– use a randomized algorithm in your research;

– write about it

MST

Review Background

kruskal •

boruvka •

verification •

Intuition: “fences” like selection algorithm.
sampling theorem:

• Heavy edges

• pick F with probability p

• get n/p F -heavy edges

Recursive algorithm without boruvka:

T (m, n) = T (m/2, n) + O(m) + T (2n, n) = O(m + n log n)

(sloppy on expectation on T(2n,n))
Recursive algorithm with 3 boruvka steps:

T (m, n) = T (m/2, n/8) + c1(m + n) + T (n/4, n/8)

≤ c(m/2 + n/8) + c1(m + n) + c(n/4 + n/8)

= (c/2 + c1)m + (c/8 + c1 + c/4 + c/8)n

= (c/2 + c1)(m + n)

so set c = 2c1 (not sloppy expectation thanks to linearity).
Notes:

• Chazelle m log α(m, n) via relaxed heap

• Ramachandran and Peti optimal deterministic algorithm (runtime unknown)

• open questions.

5

Minimum Cut

deterministic algorithms

Max-flow •

Gabow •

Min-cut implementation

data structure for contractions •

• alternative view—permutations.

• deterministic leaf algo

Recursion:

1 2 pk+1 = pk − p
4 k

qk = 4/pk + 1

qk+1 = qk + 1 + 1/qk

6

