Polling

Outline

- Set has size u, contains n "special" elements
- goal: count number of special elements
- sample with probability $p=c(\log n) / \epsilon^{2} n$
- with high probability, $(1 \pm \epsilon) n p$ special elements
- if observe k elements, deduce $n \in(1 \pm \epsilon) k$.
- Problem: what is p ?

Related idea: Monte Carlo simulation

- Probability space, event A
- easy to test for A
- goal: estimate $p=\operatorname{Pr}[A]$.
- Perform n trials (sampling with replacement).
- expected outcome pn.
- estimator $\frac{1}{n} \sum I_{i}$
- prob outside $\epsilon<\exp \left(-\epsilon^{2} n p / 3\right)(\epsilon<1)$
- for prob. δ, need

$$
n=O\left(\frac{\log 1 / \delta}{\epsilon^{2} p}\right)
$$

- what if p unknown?
- What if p is small?

Handling unknown p

- Sample n times till get $\mu_{\epsilon, \delta}=O\left(\log \delta^{-1} / \epsilon^{2}\right)$ hits
- w.h.p, $p \in(1 \pm \epsilon) \mu_{\epsilon, \delta} n$

Transitive closure

Problem outline

- databases want size
- matrix multiply time
- compute reachibility set of each vertex, add

Sampling algorithm

- generate vertex samples until $\mu_{\epsilon} \delta$ reachable from v
- deduce size of $v^{\prime} s$ reachibility set.
- reachability test: $O(m)$.
- number of sample: $n /$ size.
- $O(m n)$ per vertex-ouch!

Pipeline for all vertices simultaneously

- increase mean to $O\left(\log n / \epsilon^{2}\right)$,
- so $1 / n^{2}$ failure
- $O(m n)$ for all vertices (still ouch).

Avoid wasting work

- after $O(n \log n)$ samples, every vertex has $\log n$ hits. No more needed.
- Send at most $\log n$ samples over an edge: $\tilde{O}(m)$

Minimum Cut

deterministic algorithms

- Max-flow
- Gabow

Min-cut implementation

- data structure for contractions
- alternative view-permutations.
- deterministic leaf algo

Recursion:

$$
\begin{array}{rcc}
p_{k+1} & = & p_{k}-\frac{1}{4} p_{k}^{2} \\
q_{k} & = & 4 / p_{k}+1 \\
q_{k+1} & =q_{k}+1+1 / q_{k} &
\end{array}
$$

Minimum Cut

Min-cut

- saw RCA, $\tilde{O}\left(n^{2}\right)$ time
- Another candidate: Gabow's algorithm: $\tilde{O}(m c)$ time on m-edge graph with min-cut c
- nice algorithm, if m and c small. But how could we make that happen?
- Similarly, for those who know about it, augmenting paths gives $O(m v)$ for max flow. Good if m, v small. How make happen?
- Sampling! What's a good sample? (take suggestions, think about them.
- Define $G(p)$ —ick each edge with probability p

Intuition:

- G has m edges, min-cut c
- $G(p)$ hss $p m$ edges, min-cut $p c$
- So improve Gabow runtime by p^{2} factor!

What goes wrong? (pause for discussion)

- expectation isn't enough
- so what, use chernoff?
- min-cut has c edges
- expect to sample $\mu=p c$ of them
- chernoff says prob. off by ϵ is at most $2 e^{-\epsilon^{2} \mu / 4}$
- so set $p c=8 \log n$ or so, deduce with high probability, no min-cut deviates.
- (pause for objections)
- yes, a problem: exponentially many cuts.
- so even though Chernoff gives "exponentially small" bound, accumulation of union bound means can't bound probability of small deviation over all cuts.

Surprise! It works anyway.

- Theorem: if min cut c and build $G(p)$, then "min expected cut" is $\mu=p c$. Probability any cut deviates by more than ϵ is $O\left(n^{2} e^{-\epsilon^{2} \mu / 3}\right)$.
- So, if get μ around $12(\log n) / \epsilon^{2}$, all cuts within ϵ of expectation with high probability.
- Do so by setting $p=12(\log n) / c$
- Application: min-cut approximation.
- Theorem says a min-cut will get value at most $(1+\epsilon) \mu$ whp
- Also says that any cut of original value $(1+\epsilon) c /(1-\epsilon)$ will get value at most $(1+\epsilon) \mu$
- So, sampled graph has min-cut at most $(1+\epsilon) \mu$, and whatever cut is minimum has value at most $(1+\epsilon) c /(1-\epsilon) \approx(1+2 \epsilon) c$ in original graph.
- How find min-cut in sample? Gabow's algorithm
- in sample, min-cut $O\left((\log n) / \epsilon^{2}\right)$ whp, while number of edges is $O\left(m(\log n) / \epsilon^{2} c\right)$
- So, Gabow runtime $\tilde{O}\left(m / \epsilon^{2} c\right)$
- constant factor approx in near linear time.

Proof of Theorem

- Suppose min-cut c and build $G(p)$
- Lemma: bound on number of α-minimum cuts is $n^{2 \alpha}$.
- Base on contraction algorithm
- So we take as given: number of cuts of value less than αc is at most $n^{2 \alpha}$ (this is true, though probably slightly stronger than what you proved. If use $O\left(n^{2 \alpha}\right)$, get same result but messier.
- First consider n^{2} smallest cuts. All have expectation at least μ, so prob any deviates is $e^{-\epsilon^{2} \mu / 4}=1 / n^{2}$ by choice of μ
- Write larger cut values in increasing order c_{1}, \ldots
- Then $c_{n^{2 \alpha}}>\alpha c$
- write $k=n^{2 \alpha}$, means $\alpha_{k}=\log k / \log n^{2}$
- What prob c_{k} deviates? $e^{-\epsilon^{2} p c_{k} / 4}=e^{-\epsilon^{2} \alpha_{k} \mu / 4}$
- By choice of μ, this is k^{-2}
- sum over $k>n^{2}$, get $O(1 / n)$

