Minimum Cut

deterministic algorithms

- Max-flow
- Gabow

Min-cut implementation

- data structure for contractions
- alternative view—permutations.
- deterministic leaf algo

Recursion:

$$p_{k+1} = p_k - \frac{1}{4}p_k^2$$

$$q_k = 4/p_k + 1$$

$$q_{k+1} = q_k + 1 + 1/q_k$$

Minimum Cut

Min-cut

- saw RCA, $\tilde{O}(n^2)$ time
- Another candidate: Gabow's algorithm: $\tilde{O}(mc)$ time on *m*-edge graph with min-cut *c*
- nice algorithm, if m and c small. But how could we make that happen?
- Similarly, for those who know about it, augmenting paths gives O(mv) for max flow. Good if m, v small. How make happen?
- Sampling! What's a good sample? (take suggestions, think about them.
- Define G(p)—pick each edge with probability p

Intuition:

- G has m edges, min-cut c
- G(p) has pm edges, min-cut pc
- So improve Gabow runtime by p^2 factor!

What goes wrong? (pause for discussion)

• expectation isn't enough

- so what, use chernoff?
 - min-cut has c edges
 - expect to sample $\mu = pc$ of them
 - chernoff says prob. off by ϵ is at most $2e^{-\epsilon^2\mu/4}$
 - so set $pc = 8 \log n$ or so, deduce with high probability, no min-cut deviates.
- (pause for objections)
- yes, a problem: exponentially many cuts.
- so even though Chernoff gives "exponentially small" bound, accumulation of union bound means can't bound probability of small deviation over all cuts.

Surprise! It works anyway.

- Theorem: if min cut c and build G(p), then "min expected cut" is $\mu = pc$. Probability any cut deviates by more than ϵ is $O(n^2 e^{-\epsilon^2 \mu/3})$.
 - So, if get μ around $12(\log n)/\epsilon^2$, all cuts within ϵ of expectation with high probability.
 - Do so by setting $p = 12(\log n)/c$
- Application: min-cut approximation.
- Theorem says a min-cut will get value at most $(1 + \epsilon)\mu$ whp
- Also says that any cut of original value $(1+\epsilon)c/(1-\epsilon)$ will get value at most $(1+\epsilon)\mu$
- So, sampled graph has min-cut at most $(1 + \epsilon)\mu$, and whatever cut is minimum has value at most $(1 + \epsilon)c/(1 \epsilon) \approx (1 + 2\epsilon)c$ in original graph.
- How find min-cut in sample? Gabow's algorithm
- in sample, min-cut $O((\log n)/\epsilon^2)$ whp, while number of edges is $O(m(\log n)/\epsilon^2 c)$
- So, Gabow runtime $\tilde{O}(m/\epsilon^2 c)$
- constant factor approx in near linear time.

Proof of Theorem

- Suppose min-cut c and build G(p)
- Lemma: bound on number of α -minimum cuts is $n^{2\alpha}$.
 - Base on contraction algorithm
- So we take as given: number of cuts of value less than αc is at most $n^{2\alpha}$ (this is true, though probably slightly stronger than what you proved. If use $O(n^{2\alpha})$, get same result but messier.

- First consider n^2 smallest cuts. All have expectation at least μ , so prob any deviates is $e^{-\epsilon^2 \mu/4} = 1/n^2$ by choice of μ
- Write larger cut values in increasing order c_1, \ldots
- Then $c_{n^{2\alpha}} > \alpha c$
- write $k = n^{2\alpha}$, means $\alpha_k = \log k / \log n^2$
- What prob c_k deviates? $e^{-\epsilon^2 p c_k/4} = e^{-\epsilon^2 \alpha_k \mu/4}$
- By choice of μ , this is k^{-2}
- sum over $k > n^2$, get O(1/n)

Issue: need to estimate c. Las Vegas:

- Tree pack sample? Note good enough: too few trees
- Partition into pieces, pack each one
- get $(1 \epsilon)\mu$ trees in each piece, so $(1 \epsilon)c$ total.
- So, run sampling alg till cut found and trees packed are within ϵ .
- happens whp first time, repeat if not. Expected number of iterations less that 2, so poly expected time.

Idea for exact:

- Las vegas algorithm gave approximately maximum packing
- how turn maximum? Gabow augmentations.
- Idea: run approx alg for some ϵ , then augment to optimum
- Gives faster algorithm.
- wait, faster algorithm could be used instead of Gabow's in approximation algorithm to get faster approximation algorithm
- then could use faster approx alg (followed by augmentations) to get faster exact algorithm
- each algorithms seems to imply a faster one
- What is limit? Recursive algorithm

DAUG:

• describe alg

- give recurrence: $T(m,c) = 2T(m/2,c/2) + \tilde{O}(m\sqrt{c}) = \tilde{O}(m\sqrt{c})$
- Are we done? (wait for comment)
- No! Subproblem sizes are random variables
- Wait, in MST problem this didn't matter.
- But that was because MST recurrence was linear, could use linearity of expectation
- Here, recurrence nonlinear. Dead.

Recursion Tree:

- expand all nodes
- depth of tree $O(\log m)$ since unlikely to get 2 edges at same leaf
- wlog keep $n \leq m$ by discarding isolated vertices
- successfull and unsuccessful augmentations
- telescoping of successful augmentations
- analyze "high nodes" where cut value near expectation
- analyze "low nodes" where cut values small (a fortiori) but rely mainly on having few edges.

Later work. Just have fun talking about where this went.

- Linear time cut by tree packing
- applications to max-flow
- current state of affairs, open problems.