Minimum Cut

deterministic algorithms

- Max-flow
- Gabow

Min-cut implementation

- data structure for contractions
- alternative view-permutations.
- deterministic leaf algo

Recursion:

$$
\begin{aligned}
p_{k+1} & =p_{k}-\frac{1}{4} p_{k}^{2} \\
q_{k} & =4 / p_{k}+1 \\
q_{k+1} & =q_{k}+1+1 / q_{k}
\end{aligned}
$$

Minimum Cut

Min-cut

- saw RCA, $\tilde{O}\left(n^{2}\right)$ time
- Another candidate: Gabow's algorithm: $\tilde{O}(m c)$ time on m-edge graph with min-cut c
- nice algorithm, if m and c small. But how could we make that happen?
- Similarly, for those who know about it, augmenting paths gives $O(m v)$ for max flow. Good if m, v small. How make happen?
- Sampling! What's a good sample? (take suggestions, think about them.
- Define $G(p)$ —pick each edge with probability p

Intuition:

- G has m edges, min-cut c
- $G(p)$ has $p m$ edges, min-cut $p c$
- So improve Gabow runtime by p^{2} factor!

What goes wrong? (pause for discussion)

- expectation isn't enough
- so what, use chernoff?
- min-cut has c edges
- expect to sample $\mu=p c$ of them
- chernoff says prob. off by ϵ is at most $2 e^{-\epsilon^{2} \mu / 4}$
- so set $p c=8 \log n$ or so, deduce with high probability, no min-cut deviates.
- (pause for objections)
- yes, a problem: exponentially many cuts.
- so even though Chernoff gives "exponentially small" bound, accumulation of union bound means can't bound probability of small deviation over all cuts.

Surprise! It works anyway.

- Theorem: if min cut c and build $G(p)$, then "min expected cut" is $\mu=p c$. Probability any cut deviates by more than ϵ is $O\left(n^{2} e^{-\epsilon^{2} \mu / 3}\right)$.
- So, if get μ around $12(\log n) / \epsilon^{2}$, all cuts within ϵ of expectation with high probability.
- Do so by setting $p=12(\log n) / c$
- Application: min-cut approximation.
- Theorem says a min-cut will get value at most $(1+\epsilon) \mu$ whp
- Also says that any cut of original value $(1+\epsilon) c /(1-\epsilon)$ will get value at most $(1+\epsilon) \mu$
- So, sampled graph has min-cut at most $(1+\epsilon) \mu$, and whatever cut is minimum has value at most $(1+\epsilon) c /(1-\epsilon) \approx(1+2 \epsilon) c$ in original graph.
- How find min-cut in sample? Gabow's algorithm
- in sample, min-cut $O\left((\log n) / \epsilon^{2}\right)$ whp, while number of edges is $O\left(m(\log n) / \epsilon^{2} c\right)$
- So, Gabow runtime $\tilde{O}\left(m / \epsilon^{2} c\right)$
- constant factor approx in near linear time.

Proof of Theorem

- Suppose min-cut c and build $G(p)$
- Lemma: bound on number of α-minimum cuts is $n^{2 \alpha}$.
- Base on contraction algorithm
- So we take as given: number of cuts of value less than αc is at most $n^{2 \alpha}$ (this is true, though probably slightly stronger than what you proved. If use $O\left(n^{2 \alpha}\right)$, get same result but messier.
- First consider n^{2} smallest cuts. All have expectation at least μ, so prob any deviates is $e^{-\epsilon^{2} \mu / 4}=1 / n^{2}$ by choice of μ
- Write larger cut values in increasing order c_{1}, \ldots
- Then $c_{n^{2 \alpha}}>\alpha c$
- write $k=n^{2 \alpha}$, means $\alpha_{k}=\log k / \log n^{2}$
- What prob c_{k} deviates? $e^{-\epsilon^{2} p c_{k} / 4}=e^{-\epsilon^{2} \alpha_{k} \mu / 4}$
- By choice of μ, this is k^{-2}
- sum over $k>n^{2}$, get $O(1 / n)$

Issue: need to estimate c.
Las Vegas:

- Tree pack sample? Note good enough: too few trees
- Partition into pieces, pack each one
- get $(1-\epsilon) \mu$ trees in each piece, so $(1-\epsilon) c$ total.
- So, run sampling alg till cut found and trees packed are within ϵ.
- happens whp first time, repeat if not. Expected number of iterations less that 2, so poly expected time.

Idea for exact:

- Las vegas algorithm gave approximately maximum packing
- how turn maximum? Gabow augmentations.
- Idea: run approx alg for some ϵ, then augment to optimum
- Gives faster algorithm.
- wait, faster algorithm could be used instead of Gabow's in approximation algorithm to get faster approximation algorithm
- then could use faster approx alg (followed by augmentations) to get faster exact algorithm
- each algorithms seems to imply a faster one
- What is limit? Recursive algorithm

DAUG:

- describe alg
- give recurrence: $T(m, c)=2 T(m / 2, c / 2)+\tilde{O}(m \sqrt{c})=\tilde{O}(m \sqrt{c})$
- Are we done? (wait for comment)
- No! Subproblem sizes are random variables
- Wait, in MST problem this didn't matter.
- But that was because MST recurrence was linear, could use linearity of expectation
- Here, recurrence nonlinear. Dead.

Recursion Tree:

- expand all nodes
- depth of tree $O(\log m)$ since unlikely to get 2 edges at same leaf
- wlog keep $n \leq m$ by discarding isolated vertices
- successfull and unsuccessful augmentations
- telescoping of successful augmentations
- analyze "high nodes" where cut value near expectation
- analyze "low nodes" where cut values small (a fortiori) but rely mainly on having few edges.

Later work. Just have fun talking about where this went.

- Linear time cut by tree packing
- applications to max-flow
- current state of affairs, open problems.

