
Minimum Cut 

deterministic algorithms 

Max-flow • 

Gabow • 

Min-cut implementation 

data structure for contractions • 

•	 alternative view—permutations. 

• deterministic leaf algo 

Recursion: 

1 2 pk+1 = pk − pk4 
qk = 4/pk + 1 

qk+1 = qk + 1 + 1/qk 

Minimum Cut 

Min-cut 

˜•	 saw RCA, O(n2) time


˜
• Another candidate: Gabow’s algorithm:	 O(mc) time on m-edge graph with min-cut c 

•	 nice algorithm, if m and c small. But how could we make that happen? 

•	 Similarly, for those who know about it, augmenting paths gives O(mv) for max flow. 
Good if m, v small. How make happen? 

•	 Sampling! What’s a good sample? (take suggestions, think about them. 

• Define G(p)—pick each edge with probability p 

Intuition: 

•	 G has m edges, min-cut c 

•	 G(p) has pm edges, min-cut pc 

• So improve Gabow runtime by p2 factor! 

What goes wrong? (pause for discussion) 

•	 expectation isn’t enough 

1 



•	 so what, use chernoff? 

–	 min-cut has c edges 

–	 expect to sample µ = pc of them 

–	 chernoff says prob. off by � is at most 2e−�2µ/4 

–	 so set pc = 8 log n or so, deduce with high probability, no min-cut deviates. 

•	 (pause for objections) 

•	 yes, a problem: exponentially many cuts. 

•	 so even though Chernoff gives “exponentially small” bound, accumulation of union 
bound means can’t bound probability of small deviation over all cuts. 

Surprise! It works anyway. 

•	 Theorem: if min cut c and build G(p), then “min expected cut” is µ = pc. Probability 
any cut deviates by more than � is O(n2e−�2µ/3). 

–	 So, if get µ around 12(log n)/�2, all cuts within � of expectation with high prob
ability. 

–	 Do so by setting p = 12(log n)/c 

•	 Application: min-cut approximation. 

•	 Theorem says a min-cut will get value at most (1 + �)µ whp 

•	 Also says that any cut of original value (1 + �)c/(1 − �) will get value at most (1 + �)µ 

•	 So, sampled graph has min-cut at most (1 + �)µ, and whatever cut is minimum has 
value at most (1 + �)c/(1 − �) ≈ (1 + 2�)c in original graph. 

•	 How find min-cut in sample? Gabow’s algorithm 

•	 in sample, min-cut O((log n)/�2) whp, while number of edges is O(m(log n)/�2c) 

˜•	 So, Gabow runtime O(m/�2c) 

• constant factor approx in near linear time. 

Proof of Theorem 

•	 Suppose min-cut c and build G(p)


Lemma: bound on number of α-minimum cuts is n2α .
• 

–	 Base on contraction algorithm 

•	 So we take as given: number of cuts of value less than αc is at most n2α (this is true, 
though probably slightly stronger than what you proved. If use O(n2α), get same result 
but messier. 

2 



•	 First consider n2 smallest cuts. All have expectation at least µ, so prob any deviates 
is e−�2µ/4 = 1/n2 by choice of µ 

•	 Write larger cut values in increasing order c1, . . .


Then cn > αc
2α• 

2 •	 write k = n2α, means αk = log k/ log n


pck /4 = e−�2αk µ/4
What prob ck deviates? e−�2 • 

•	 By choice of µ, this is k−2 

•	 sum over k > n2, get O(1/n) 

Issue: need to estimate c. 
Las Vegas: 

•	 Tree pack sample? Note good enough: too few trees 

•	 Partition into pieces, pack each one 

•	 get (1 − �)µ trees in each piece, so (1 − �)c total. 

•	 So, run sampling alg till cut found and trees packed are within �. 

•	 happens whp first time, repeat if not. Expected number of iterations less that 2, so 
poly expected time. 

Idea for exact: 

•	 Las vegas algorithm gave approximately maximum packing 

•	 how turn maximum? Gabow augmentations. 

•	 Idea: run approx alg for some �, then augment to optimum 

•	 Gives faster algorithm. 

•	 wait, faster algorithm could be used instead of Gabow’s in approximation algorithm 
to get faster approximation algorithm 

•	 then could use faster approx alg (followed by augmentations) to get faster exact algo
rithm 

•	 each algorithms seems to imply a faster one 

• What is limit? Recursive algorithm 

DAUG: 

•	 describe alg 

3 



give recurrence: T (m, c) = 2T (m/2, c/2) + ˜ O(m
√

c)O(m
√

c) = ˜• 

•	 Are we done? (wait for comment) 

•	 No! Subproblem sizes are random variables 

•	 Wait, in MST problem this didn’t matter. 

•	 But that was because MST recurrence was linear, could use linearity of expectation 

• Here, recurrence nonlinear. Dead. 

Recursion Tree: 

•	 expand all nodes 

•	 depth of tree O(log m) since unlikely to get 2 edges at same leaf 

•	 wlog keep n ≤ m by discarding isolated vertices 

•	 successfull and unsuccessful augmentations 

•	 telescoping of successful augmentations 

•	 analyze “high nodes” where cut value near expectation 

•	 analyze “low nodes” where cut values small (a fortiori) but rely mainly on having few 
edges. 

Later work. Just have fun talking about where this went. 

•	 Linear time cut by tree packing 

•	 applications to max-flow 

•	 current state of affairs, open problems. 

4 


