Linear programming.

- define
- assumptions:
- nonempty, bounded polyhedron
- minimizing x_{1}
- unique minimum, at a vertex
- exactly d constraints per vertex
- definitions:
- hyperplanes H
- basis $B(H)$ of hyperplanes that define optimum
- optimum value $O(H)$
- Simplex
- exhaustive polytope search:
- walks on vertices
- runs in $O\left(n^{\lceil d / 2\rceil}\right)$ time in theory
- often great in practice
- polytime algorithms exist (ellipsoid)
- but bit-dependent (weakly polynomial)!
- OPEN: strongly polynomial LP
- goal today: polynomial algorithms for small d

Random sampling algorithm

- Goal: find $B(H)$
- Plan: random sample
- solve random subproblem
- keep only violating constraints V
- recurse on leftover
- problem: violators may not contain all of $B(H)$
- bf BUT, contain some of $B(H)$
- opt of sample better than opt of whole
- but any point feasible for $B(H)$ no better than $O(H)$
- so current opt not feasible for $B(H)$
- so some $B(H)$ violated
- revised plan:
- random sample
- discard useless planes, add violators to "active set"
- repeat sample on whole problem while keeping active set
- claim: add one $B(H)$ per iteration
- Algorithm SampLP:
- set S of "active" hyperplanes.
- if $n<9 d^{2}$ do simplex $\left(d^{d / 2+O(1)}\right)$
- pick $R \subseteq H-S$ of size $d \sqrt{n}$
$-x \leftarrow \mathbf{S a m p L P}(R \cup S)$
- $V \leftarrow$ hyperplanes of H that violate x
- if $V \leq 2 \sqrt{n}$, add to S
- Runtime analysis:
- mean size of V at most \sqrt{n}
- each iteration adds to S with prob. 1/2.
- each successful iteration adds a $B(H)$ to S
- deduce expect $2 d$ iterations.
- $O(d n)$ per phase needed to check violating constraints: $O\left(d^{2} n\right)$ total
- recursion size at most $2 d \sqrt{n}$

$$
T(n) \leq 2 d T(2 d \sqrt{n})+O\left(d^{2} n\right)=O\left(d^{2} n \log n\right)+(\log n)^{O(\log d)}
$$

(Note valid use of linearity of expectation)
Must prove claim, that mean $V \leq \sqrt{n}$.

- Lemma:
- suppose $|H-S|=m$.
- sample R of size r from $H-S$
- then expected violators $d(m-r-1) /(r-d)$
- book broken: only works for empty S
- Let C_{H} be set of optima of subsets $T \cup S, T \subseteq H$
- Let C_{R} be set of optima of subsets $T \cup S, T \subseteq R$
- note $C_{R} \subseteq C_{H}$, and $O(R \cup S)$ is only point violating no constraints of R
- Let v_{x} be number of constraints in H violated by $x \in C_{H}$,
- Let i_{x} indicate $x=O P T(R \cup S)$

$$
\begin{aligned}
E[|V|] & =E\left[\sum v_{x} i_{x}\right] \\
& =\sum v_{x} \operatorname{Pr}\left[i_{x}\right]
\end{aligned}
$$

- decide $\operatorname{Pr}\left[v_{x}\right]$
- $\binom{m}{r}$ equally likely subsets.
- how many have optimum x ?
- let q_{x} be number of planes defining x not already in S
- must choose q_{x} planes to define x
- all others choices must avoid planes violating x. prob.

$$
\begin{aligned}
\binom{m-v_{x}-q_{x}}{r-q_{x}} /\binom{m}{r} & =\frac{\left(m-v_{x}-q_{x}\right)-\left(r-q_{x}\right)+1}{r-q_{x}}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r} \\
& \leq \frac{(m-r+1)}{r-d}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r}
\end{aligned}
$$

- deduce

$$
E[V] \leq \frac{m-r+1}{r-d} \sum v_{x}\binom{m-v_{x}-q_{x}}{r-q_{x}-1} /\binom{m}{r}
$$

- summand is prob that x is a point that violates exactly one constraint in r.
* must pick q_{x} constraints defining x
* must pick $r-q_{x}-1$ constraints from $m-v_{x}-q_{x}$ nonviolators
* must pick one of v_{x} violators
- therefore, sum is expected number of points that violate exactly one constraint in R.
- but this is only d (one for each constraint in basis of R)

Result:

- saw sampling LP that ran in time $O\left((\log n)^{O(\log d)}+d^{2} n \log n+d^{O(d)}\right.$
- key idea: if pick r random hyperplanes and solve, expect only $d m / r$ violating hyperplanes.

Iterative Reweighting

Get rid of recursion and highest order term.

- idea: be "softer" regarding mistakes
- plane in V gives "evidence" it's in $B(H)$
- Algorithm:
- give each plane weight one
- pick $9 d^{2}$ planes with prob. proportional to weights
- find optimum of R
- find violators of R
- if

$$
\sum_{h \in V} w_{h} \leq\left(2 \sum_{h \in H} w_{h}\right) /(9 d-1)
$$

then double violator weights

- repeat till no violators
- Analysis
- show weight of basis grows till rest is negligible.
- claim $O(d \log n)$ iterations suffice.
- claim iter successful with prob. $1 / 2$
- deduce runtime $O\left(d^{2} n \log n\right)+d^{d / 2+O(1)} \log n$.
- proof of claim:
* after each iter, double weight of some basis element
* after $k d$ iterations, basis weight at least $d 2^{k}$
* total weight increase at most $(1+2 /(9 d-1))^{k d} \leq n \exp (2 k d /(9 d-1))$
- after $d \log n$ iterations, done.
- so runtime $O\left(d^{2} n \log n\right)+d^{O(d)} \log n$
- Can improve to linear in n

DNF counting

Rare events

- if p small, huge sample size
- importance sampling biases samples toward event.

Complexity:

- $\sharp \mathcal{P}$-complete.
- PRAS, FPRAS

Coverage algorithm

- given $A_{i} \subseteq V$, count $\cup A_{i}$
- problem: random $a \in V$ too rarely satisfies
- Idea: Bias sample to create better odds of interesting event
- work in $\uplus A_{i}$
- size known
- can sample uniformly
- dense subset of right size
- "cannonical" assignment is "minimum" copy of assignment for given clause
- canonical items number same as $\cup A_{i}$
- Analysis
- assignment a, satisfies s_{a} clauses.
$-\sum_{a}\left(s_{a} / n\right)\left(1 / s_{a}\right)$
- prob. OK at least $1 / m$, so m trials suff.
- unbiased estimator (expectation equals correct value)

Network Reliability

