Linear programming.

- define
- assumptions:
 - nonempty, bounded polyhedron
 - minimizing x_1
 - unique minimum, at a vertex
 - exactly d constraints per vertex
- definitions:
 - hyperplanes H
 - **basis** B(H) of hyperplanes that define optimum
 - optimum value O(H)
- Simplex
 - exhaustive polytope search:
 - walks on vertices
 - runs in $O(n^{\lceil d/2 \rceil})$ time in theory
 - often great in practice
- polytime algorithms exist (ellipsoid)
- but bit-dependent (weakly polynomial)!
- OPEN: strongly polynomial LP
- goal today: polynomial algorithms for small d

Random sampling algorithm

- Goal: find B(H)
- Plan: random sample
 - solve random subproblem
 - keep only violating constraints V
 - recurse on leftover
- problem: violators may not contain all of B(H)
- bf BUT, contain some of B(H)
 - opt of sample better than opt of whole

- but any point feasible for B(H) no better than O(H)
- so current opt not feasible for B(H)
- so some B(H) violated
- revised plan:
 - random sample
 - discard useless planes, add violators to "active set"
 - repeat sample on whole problem while keeping active set
 - claim: add one B(H) per iteration
- Algorithm **SampLP**:
 - set S of "active" hyperplanes.
 - if $n < 9d^2$ do simplex $(d^{d/2+O(1)})$
 - pick $R \subseteq H S$ of size $d\sqrt{n}$
 - $-x \leftarrow \mathbf{SampLP}(R \cup S)$
 - $V \leftarrow$ hyperplanes of H that violate x
 - if $V \leq 2\sqrt{n}$, add to S
- Runtime analysis:
 - mean size of V at most \sqrt{n}
 - each iteration adds to S with prob. 1/2.
 - each successful iteration adds a B(H) to S
 - deduce expect 2d iterations.
 - -O(dn) per phase needed to check violating constraints: $O(d^2n)$ total
 - recursion size at most $2d\sqrt{n}$

$$T(n) \le 2dT(2d\sqrt{n}) + O(d^2n) = O(d^2n\log n) + (\log n)^{O(\log d)}$$

(Note valid use of linearity of expectation)

Must prove claim, that mean $V \leq \sqrt{n}$.

- Lemma:
 - suppose |H S| = m.
 - sample R of size r from H S
 - then expected violators d(m-r-1)/(r-d)
- book broken: only works for empty S

- Let C_H be set of optima of subsets $T \cup S, T \subseteq H$
- Let C_R be set of optima of subsets $T \cup S$, $T \subseteq R$
- note $C_R \subseteq C_H$, and $O(R \cup S)$ is only point violating no constraints of R
- Let v_x be number of constraints in H violated by $x \in C_H$,
- Let i_x indicate $x = OPT(R \cup S)$

$$E[|V|] = E[\sum v_x i_x] \\ = \sum v_x \Pr[i_x]$$

- decide $\Pr[v_x]$
 - $-\binom{m}{r}$ equally likely subsets.
 - how many have optimum x?
 - let q_x be number of planes defining x **not** already in S
 - must choose q_x planes to define x
 - all others choices must avoid planes violating x. prob.

$$\binom{m - v_x - q_x}{r - q_x} / \binom{m}{r} = \frac{(m - v_x - q_x) - (r - q_x) + 1}{r - q_x} \binom{m - v_x - q_x}{r - q_x - 1} / \binom{m}{r}$$

$$\leq \frac{(m - r + 1)}{r - d} \binom{m - v_x - q_x}{r - q_x - 1} / \binom{m}{r}$$

- deduce

$$E[V] \le \frac{m-r+1}{r-d} \sum v_x \binom{m-v_x-q_x}{r-q_x-1} / \binom{m}{r}$$

- summand is prob that x is a point that violates exactly one constraint in r.
 - * must pick q_x constraints defining x
 - * must pick $r q_x 1$ constraints from $m v_x q_x$ nonviolators
 - * must pick one of v_x violators
- therefore, sum is expected number of points that violate exactly one constraint in R.
- but this is only d (one for each constraint in basis of R)

Result:

- saw sampling LP that ran in time $O((\log n)^{O(\log d)} + d^2 n \log n + d^{O(d)})$
- key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyperplanes.

Iterative Reweighting

Get rid of recursion and highest order term.

- idea: be "softer" regarding mistakes
- plane in V gives "evidence" it's in B(H)
- Algorithm:
 - give each plane weight one
 - pick $9d^2$ planes with prob. proportional to weights
 - find optimum of R
 - find violators of R
 - if

$$\sum_{h \in V} w_h \le (2\sum_{h \in H} w_h)/(9d-1)$$

- then double violator weights
- repeat till no violators
- Analysis
 - show weight of basis grows till rest is negligible.
 - claim $O(d \log n)$ iterations suffice.
 - claim iter successful with prob. 1/2
 - deduce runtime $O(d^2 n \log n) + d^{d/2 + O(1)} \log n$.
 - proof of claim:
 - * after each iter, double weight of some basis element
 - * after kd iterations, basis weight at least $d2^k$
 - * total weight increase at most $(1+2/(9d-1))^{kd} \le n \exp(2kd/(9d-1))$
 - after $d \log n$ iterations, done.
- so runtime $O(d^2n\log n) + d^{O(d)}\log n$
- Can improve to linear in n

DNF counting

Rare events

- if p small, huge sample size
- importance sampling biases samples toward event.

Complexity:

- $\sharp \mathcal{P}$ -complete.
- PRAS, FPRAS

Coverage algorithm

- given $A_i \subseteq V$, count $\cup A_i$
- problem: random $a \in V$ too rarely satisfies
- Idea: Bias sample to create better odds of interesting event

 - size known
 - can sample uniformly
 - dense subset of right size
 - "cannonical" assignment is "minimum" copy of assignment for given clause
 - canonical items number same as $\cup A_i$
- Analysis
 - assignment a, satisfies s_a clauses.
 - $-\sum_a (s_a/n)(1/s_a)$
 - prob. OK at least 1/m, so m trials suff.
- unbiased estimator (expectation equals correct value)

Network Reliability