possibly no class monday.

Linear programming.

- definitions:
 - hyperplanes H
 - **basis** B(H) of hyperplanes that define optimum
 - optimum value O(H)

Random sampling algorithm

- Goal: find B(H)
- Plan: random sample
 - solve random subproblem
 - keep only violating constraints V
 - recurse on leftover
- problem: violators may not contain all of B(H)
- bf BUT, contain **some** of B(H)
 - opt of sample better than opt of whole
 - but any point feasible for B(H) no better than O(H)
 - so current opt not feasible for B(H)
 - so some B(H) violated

Key Lemma:

- suppose |H S| = m.
- sample R of size r from H S
- then expected violators d(m-r-1)/(r-d)

Result:

- saw sampling LP that ran in time $O((\log n)^{O(\log d)} + d^2n\log n + d^{O(d)})$
- key idea: if pick r random hyperplanes and solve, expect only dm/r violating hyperplanes.

Iterative Reweighting

Get rid of recursion and highest order term.

- idea: be "softer" regarding mistakes
- plane in V gives "evidence" it's in B(H)
- Algorithm:
 - give each plane weight one
 - pick $9d^2$ planes with prob. proportional to weights
 - find optimum of R
 - find violators of R
 - if

$$\sum_{h \in V} w_h \le (2\sum_{h \in H} w_h)/(9d-1)$$

then double violator weights

- repeat till no violators
- Analysis
 - show weight of basis grows till rest is negligible.
 - claim $O(d \log n)$ iterations suffice.
 - claim iter successful with prob. 1/2
 - deduce runtime $O(d^2 n \log n) + d^{d/2 + O(1)} \log n$.
 - proof of claim:
 - * after each iter, double weight of some basis element
 - * after kd iterations, basis weight at least $d2^k$
 - * total weight increase at most $(1+2/(9d-1))^{kd} \le n \exp(2kd/(9d-1))$
 - after $d\log n$ iterations, done.
- so runtime $O(d^2n\log n) + d^{O(d)}\log n$
- Can improve to linear in n

DNF counting

Define

 $\bullet~m$ clauses

Complexity:

- $\sharp \mathcal{P}$ -complete.
- Define PRAS, FPRAS

Rare events

- Idea: choose random assignment, count satisfying fraction
- if *p* small, huge sample size
- importance sampling biases samples toward event.

Coverage algorithm

- given m sets $A_i \subseteq V$, count $\cup A_i$
- problem: random $a \in V$ too rarely satisfies
- Idea: Bias sample to create better odds of interesting event

 - size n known
 - can sample uniformly from it
 - dense subset of right size
 - "canonical" assignment is "first" copy of assignment for given clause
 - canonical items number same as $\cup A_i$
- Analysis
 - assignment a, satisfies s_a clauses.
 - $-\sum_{a}(s_a/n)(1/s_a)=m/n$
 - We know n, so can deduce m
 - How many trials needed? Till get $O(\mu_{\epsilon\delta})$ success
 - prob. OK at least 1/m, so $\tilde{O}(m)$ trials suff.
- unbiased estimator (expectation equals correct value)

Network Reliability