Markov Chains

Markov chains:

- Powerful tool for sampling from complicated distributions
- rely only on local moves to explore state space.
- Many use Markov chains to model events that arise in nature.
- We create Markov chains to explore and sample from problems.

2SAT:

- Fix some assignment A
- let $f(k)$ be expected time to get all n variables to match A if n currently match.
- Then $f(n)=0, f(0)=1+f(1)$, and $f(k)=1+\frac{1}{2}(f(k+1)+f(k-1)$.
- Rewrite: $f(0)-f(1)=1$ and $f(k)-f(k+1)=2+f(k-1)-f(k)$
- So $f(k)-f(k+1)=2 k+1$
- deduce $f(0)=1+3+\cdots+(2 n-1)=n^{2}$
- so, find with probability $1 / 2$ in $2 n^{2}$ time.
- With high probability, find in $O\left(n^{2} \log n\right)$ time.

More general formulation: Markov chain

- State space S
- markov chain begins in a start state X_{0}, moves from state to state, so output of chain is a sequence of states $X_{0}, X_{1}, \ldots=\left\{X_{t}\right\}_{t=0}^{\infty}$
- movement controlled by matrix of transition probabilities $p_{i j}=$ probability next state will be j given current is i.
- thus, $\sum_{j} p_{i j}=1$ for every $i \in S$
- implicit in definition is memorylessness property:

$$
\operatorname{Pr}\left[X_{t+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t}=i\right]=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right]=p_{i j} .
$$

- Initial state X_{0} can come from any probability distribution, or might be fixed (trivial prob. dist.)
- Dist for X_{0} leads to dist over sequences $\left\{X_{t}\right\}$
- Suppose X_{t} has distribution q (vector, q_{i} is prob. of state i). Then X_{t+1} has dist $q P$. Why?
- Observe $\operatorname{Pr}\left[X_{t+r}=j \mid X_{t}=i\right]=P_{i j}^{r}$

Graph of MC:

- Vertex for every state
- Edge (i, j) if $p_{i j}>0$
- Edge weight $p_{i j}$
- weighted outdegree 1
- Possible state sequences are paths through the graph

Stationary distribution:

- a π such that $\pi P=\pi$
- left eigenvector, eigenvalue 1
- steady state behavior of chain: if in stationary, stay there.
- note stationary distribution is a sample from state space, so if can get right stationary distribution, can sample
- lots of chains have them.
- to say which, need definitions.

Things to rule out:

- infinite directed line (no stationary)
- 2-cycle (no stationary)
- disconnected graph (multiple)

Irreducibility

- any state can each any other state
- i.e. path between any two states
- i.e. single strong component in graph

Persistence/Transience:

- $r_{i j}^{(t)}$ is probability first hit state j at t, given start state i.
- $f_{i j}$ is probability eventually reach j from i, so $\sum r_{i j}^{(t)}$
- expected time to reach is hitting time $h_{i j}=\sum t r_{i j}^{(t)}$
- If $f_{i j}<1$ then $h_{i j}=\infty$ since might never reach. Converse not always true.
- If $f_{i i}<1$, state is transient. Else persistent. If $h_{i i}=\infty$, null persistent.

Persistence in finite graphs:

- graph has strong components
- final strong component has no outgoing edges
- Nonfinal components:
- once leave nonfinal component, cannot return
- if nonfinal, nonzero probability of leaving in n steps.
- so guaranteed to leave eventually
- so, vertices in nonfinal components are transient
- Final components
- if final, will stay in that component
- If two vertices in same strong component, have path between them
- so nonzero probability of reaching in (say) n steps.
- so, vertices in final components are persistent
- geometric distribution on time to reach, so expected time finite. Not null-persistent Conclusion:
- In finite chain, no null-persistent states
- In finite irreducible chain, all states non-null persistent (no transient states)

Periodicity:

- Periodicity of a state is max T such that some state only has nonzero probability at times $a+T i$ for integer i
- Chain periodic if some state has periodicity >1
- In graph, all cycles containing state have length multiple of T
- Easy to eliminate: add self loops
- slows down chain, otherwise same

Ergodic:

- aperiodic and non-null persistent
- means might be in state at any time in (sufficiently far) future

Fundamental Theorem of Markov chains: Any irreducible, finite, aperiodic Markov chain satisfies:

- All states ergodic (reachable at any time in future)
- unique stationary distribution π, with all $\pi_{i}>0$
- $f_{i i}=1$ and $h_{i i}=1 / \pi_{i}$
- number of times visit i in t steps approaches $t \pi_{i}$ in limit of t.

Justify all except uniqueness here.
Finite irreducible aperiodic implies ergodic (since finite irreducible implies non-null persistent)
Intuitions for quantities:

- $h_{i i}$ is expected return time
- So hit every $1 / h_{i i}$ steps on average
- So $h_{i i}=1 / \pi_{i}$
- If in stationary dist, $t \pi_{i}$ visits follows from linearity of expectation

Random walks on undirected graphs:

- general Markov chains are directed graphs. But undirected have some very nice properties.
- take a connected, non-bipartite undirected graph on n vertices
- states are vertices.
- move to uniformly chosen neighber.
- So $p_{u v}=1 / d(u)$ for every neighbor v
- stationary distribution: $\pi_{v}=d(v) / 2 m$
- unqiqueness says this is only one
- deduce $h_{v v}=2 m / d(v)$

Definitions:

- Hitting time $h_{u v}$ is expected time to reach u from v
- commute time is $h_{u v}+h_{v u}$
- $C_{u}(G)$ is expected time to visit all vertices of G, starting at u
- cover time is $\max _{u} C_{u}(G)$ (so in fact is max over any starting distribution).
- let's analyze max cover time

Examples:

- clique: commute time n, cover time $\Theta(n \log n)$
- line: commute time between ends is $\Theta\left(n^{2}\right)$
- lollipop: $h_{u v}=\Theta\left(n^{3}\right)$ while $h_{v u}=\Theta\left(n^{2}\right)$ (big difference!)
- also note: lollipop has edges added to line, but higher cover time: adding edges can increase cover time even though improves connectivity.
general graphs: adjacent vertices:
- lemma: for adjcaent $(u, v), h_{u v}+h_{v u} \leq 2 m$
- proof: new markov chain on edge traversed following vertex MC
- transition matrix is doubly stochastic: column sums are 1 (exactly $d(v)$ edges can transit to edge (v, w), each does so with probability $1 / d(v))$
- In homework, show such matrices have uniform stationary distribution.
- Deduce $\pi_{e}=1 / 2 m$. Thus $h_{e e}=2 m$.
- So consider suppose original chain on vertex v.
- suppose arrived via (u, v)
- expected to traverse (u, v) again in $2 m$ steps
- at this point will have commuted u to v and back.
- so conditioning on arrival method, commute time $2 m$ (thanks to memorylessness)

General graph cover time:

- theorem: cover time $O(m n)$
- proof: find a spanning tree
- consider a dfs of tree-crosses each edge once in each direction, gives order $v_{1}, \ldots, v_{2 n-1}$
- time for the vertices to be visited in this order is upper bounded by commute time
- but vertices adjacent, so commute times $O(m)$
- total time $O(m n)$
- tight for lollipop, loose for line.

Tighter analysis:

- analogue with electrical networks
- Assume unit edge resistance
- Kirchoff's law: current (rate of transitions) conservation
- Ohm's law
- Gives effective resistance $R_{u v}$ between two vertices.
- Theorem: $C_{u v}=2 m R_{u v}$
- (tightens previous theorem, since $\left.R_{u v} \leq 1\right)$
- Proof:
- Suppose put $d(x)$ amperes into every x, remove $2 m$ from v
- $\phi_{u v}$ voltage at u with respect to v
- Ohm: Current from u to w is $\phi_{u v}-\phi_{w v}$
- Kirchoff: $d(u)=\sum_{w \in N(u)}$ currents $=\sum_{w \in N(u)} \phi_{u v}-\phi_{w v}=d(u) \phi_{u v}-\sum \phi_{w v}$
- Also, $h_{u v}=\sum(1 / d(u))\left(1+h_{w v}\right)$
- same soln to both linear equations, so $\phi_{u v}=h_{u v}$
- By same arg, $h_{v u}$ is voltage at v wrt u, if insert $2 m$ at u and remove $d(x)$ from every x
- add linear systems, find $h_{u v}+h_{v u}$ is voltage difference when insert $2 m$ at u and remove at v.
- now apply ohm.

