
Complexity. 

What is a rand. alg? 
What is an alg? 

•	 Turing Machines. RAM with large ints. log-cost RAM as TM. 

•	 language as decision problem (vs optimization problems) “graphs with 
small min-cut.” algos accept/reject 

•	 complexity class as set of languages 

•	 P . polynomial time in input size 

•	 N P as P with good advice string. witnesses 

• polytime reductions. hardness, completeness. 

Randomized algorithms have advice string, but it is random 

•	 measure probs over space of advice strings 

• equivalence to fliping unbiased random bits 

ZP P (zero error probabilistic polytime) 

•	 Polynomial expected time 

•	 A(x) accepts iff x ∈ L. 

• Las Vegas algorithms 

RP (randomized polytime) (MC with one-sided error). 

•	 polytime (always) 

⇒ rejects (always). •	 x �∈ L 

•	 x ∈ L ⇒ accepts with probability > 1/2. 

•	 Monte Carlo algorithm


one sided error
• 

•	 precise numbers unimportant: amplification. 

•	 min-cut example


coRP .
• 

•	 What if NOT worst case polytime? stop when passes time bound and 
accept. 

•	 ZP P = RP ∩ coRP 

1 



PP (probabilistic polytime) (two-sided MC) 

•	 Worst case polytime (can force) 

•	 x ∈ L ⇒ accepts prob > 1/2 

•	 x /∈ L ⇒ accepts prob < 1/2 

• weakness: NP ⊆ PP 

BPP (bounded probabilistic polytime) 

•	 worst case polytime (can force) 

•	 x ∈ L ⇒ accepts prob > 3/4 

•	 x /∈ L ⇒ accepts prob < 1/4 

• precise numbers unimportant. 

Clearly P ⊆ RP ⊆ NP . Open questions: 

•	 RP = coRP ? (equiv RP = ZPP ) 

•	 BPP ⊆ NP? 

Tree evaluation. 

Moving LOE through a (linear) recurrence. 

•	 define. algo cost is number of leaves. n = 2h


NOR model
• 

deterministic model: must examine all leaves. time 2h = 4h/2 = n 

•	 by induction: on any tree of height h, as questions are asked, can answer 
such that root is not determined until all leaves checked. 

•	 Note: bad instance being constructed on the fly as algorithm runs. 

•	 But, since algorithm deterministic, bad instance can be built in advance 
by simulating algorithm. 

nondeterministic/checking 

•	 W (0) = L(0) = 1 

•	 winning position can guess move. W (h) = L(h − 1) 

•	 losing must check both. L(h) = 2W (h − 1) 

1/2 • follows W (h) = 2 ∗ W (h − 2) = 2h/2 = n

randomized–guess which leaf wins. 

2 



•	 W (0) = 1 

•	 W (T ) is a random variable 

–	 If T is winning time it takes to verify T is a win. Undefined if T is 
losing. 

–	 Ditto L(T ). 

–	 Expectation is over random choices of algorithm; NOT over trees. 

–	 Different trees have different expectations 

•	 W (h) = max over all height-h winning trees of E[W (T )] 

•	 L(h) = same for losing trees. 

•	 Consider any losing height-h tree 

–	 both children are winning 

–	 must eval both. 

–	 each takes at most W (h − 1) in expectation 

–	 Thus (by linearity of expectation) we take at most 2W (h − 1) 

–	 Deduce L(h) ≤ 2W (h − 1). 

•	 Consider any winning height-h tree 

–	 Possibly both children are losing. If so, we stop after evaling the first 
child we pick. Total time L(h − 1). 

–	 If exactly one child losing, two cases: 

∗	 if first choice is winning, eval it and stop: time at most L(h − 1). 
∗	 if first choice is losing, eval both children: L(h − 1) + W (h − 1). 
∗	 Conjecture: W (h − 1) ≤ L(h − 1) 
∗	 Then time ≤ 2L(h − 1). 

–	 Each case 1/2 the time. Thus, expected time ≤ (3/2)L(h − 1). 

–	 Deduce W (h) ≤ (3/2)L(h − 1) ≤ (3/2)2W (h − 2) = 3W (h − 2) 

So W (h) ≤ 3h/2 = nlog4 3 = n0.793– 

–	 Go back and confirm assumption that W (h) ≤ L(h). 

3 


