0.1 Review

general graphs: adjacent vertices:

- lemma: for adjcaent $(u, v), h_{u v}+h_{v u} \leq 2 m$
- proof: new markov chain on edge traversed following vertex MC
- transition matrix is doubly stochastic: column sums are 1 (exactly $d(v)$ edges can transit to edge (v, w), each does so with probability $1 / d(v))$
- In homework, show such matrices have uniform stationary distribution.
- Deduce $\pi_{e}=1 / 2 m$. Thus $h_{e e}=2 m$.
- So consider suppose original chain on vertex v.
- suppose arrived via (u, v)
- expected to traverse (u, v) again in $2 m$ steps
- at this point will have commuted u to v and back.
- so conditioning on arrival method, commute time $2 m$ (thanks to memorylessness)

General graph cover time:

- theorem: cover time $O(m n)$
- proof: find a spanning tree
- consider a dfs of tree-crosses each edge once in each direction, gives order $v_{1}, \ldots, v_{2 n-1}$
- time for the vertices to be visited in this order is upper bounded by commute time
- but vertices adjacent, so commute times $O(m)$
- total time $O(m n)$
- tight for lollipop, loose for line.

Applications

Testing graph connectivity in logspace.

- Deterministic algorithm (matrix squaring) gives $\log ^{2} n$ space
- Smarter algorithms gives $\log ^{4 / 3} n$ space
- $\log n$ open
- Randomized logspace achieves one-sided error
universal traversal sequences.
- Define labelled graph
- UTS covers any labelled graph
- deterministic construction known for cycle only
- we showed cover time $O\left(n^{3}\right)$
- so probability takes more than $2 n^{3}$ to cover is $1 / 2$
- repeat k times. Prob fail $1 / 2^{k}$
- How many graphs? $(n d)^{O(n d)}$
- So set $k=O(n d \log n d)$
- probabilistic method

Nisan $n^{O(\log n)}$ via pseudorandom generator that fools logspace machines.

Markov Chains for Sampling

Sampling:

- Given complex state space
- Want to sample from it
- Use some Markov Chain
- Run for a long time
- end up "near" stationary distribution
- Reduces sampling to local moves (easier)
- no need for global description of state space
- Allows sample from exponential state space

Formalize: what is "near" and "long time"?

- Stationary distribution π
- arbitrary distribution q
- relative pointwise distance (r.p.d.) $\max _{j}\left|q_{j}-\pi_{j}\right| / \pi_{j}$
- Intuitively close.
- Formally, suppose r.p.d. δ.
- Then $(1-\delta) \pi \leq q$
- So can express distribution q as "with probability $1-\delta$, sample from π. Else, do something wierd.
- So if δ small, "as if" sampling from π each time.
- If δ poly small, can do poly samples without goof
- Gives "almost stationary" sample from Markov Chain
- Mixing Time: time to reduce r.p.d to some ϵ

Eigenvalues

Method 1 for mixing time: Eigenvalues.

- Consider transition matrix P.
- Eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$
- Corresponding Eigenvectors e_{1}, \ldots, e_{n}.
- Any vector q can be written as $\sum a_{i} e_{i}$
- Then $q P=\sum a_{i} \lambda_{i} e_{i}$
- $\operatorname{and} q P^{k}=\sum a_{i} \lambda_{i}^{k} e_{i}$
- so sufficient to understand eigenvalues and vectors.
- Is any $\left|\lambda_{i}\right|>1$?
- If so, $e_{i} P=\lambda_{i} P$
- let M be max entry of e_{i} (in absolute value)
- if $\lambda_{i}>1$, then some $e_{i} P$ entry is $\lambda_{i} M>M$
- any entry of $e_{i} P$ is a convex combo of values at most M, so max value M, contradiction.
- Deduce: all eigenvalues of stochastic matrix at most 1.
- How many $\lambda_{i}=1$?
- Stationary distribution $\left(e_{1}=\pi\right)$
- if any others, could add a little bit of it to e_{1}, get second stationary distribution
- What about -1? Only if periodic.
- so all other coordinates of eigenvalue decomposition decay as λ_{i}^{k}.
- So if can show other λ_{i} small, converge to stationary distribution fast.
- In particular, if $\lambda_{2}<1-1 /$ poly, get polynomial mixing time

Expanders:

Definition

- bipartite
- n vertices, regular degree d
- $|\Gamma(S)| \geq(1+c(1-2|S| / n))|S|$
factor c more neighbors, at least until S near $n / 2$.
Take random walk on (n, d, c) expander with constant c
- add self loops (with probability $1 / 2$ to deal with periodicity.
- uniform stationary distribution
- lemma: second eigenvalue $1-O(1 / d)$

$$
\lambda_{2} \leq 1-\frac{c^{2}}{d\left(2048+4 c^{2}\right)}
$$

- Intuition on convergence: because neighborhoods grow, position becomes unpredictable very fast.
- proof: messy math

Deduce: mixing time in expander is $O(\log n)$ to get ϵ r.p.d. (since $\pi_{i}=1 / n$)
Converse theorem: if $\lambda_{2} \leq 1-\epsilon$, get expander with

$$
c \geq 4\left(\epsilon-\epsilon^{2}\right)
$$

Walks that mix fast are on expanders.
Gabber-Galil expanders:

- Do expanders exist? Yes! proof: probabilistic method.
- But in this case, can do better deterministically.
- Gabber Galil expanders.
- Let $n=2 m^{2}$. Vertices are (x, y) where $x, y \in Z_{m}$ (one set per side)
-5 neighbors: $(x, y),(x, x+y),(x, x+y+1),(x+y, y),(x+y+1, y)(\operatorname{add} \bmod m)$
- or 7 neighbors of similar form.
- Theorem: this $d=5$ graph has $c=(2-\sqrt{3}) / 4$, degree 7 has twice the expansion.
- in other words, c and d are constant.
- meaning $\lambda_{2}=1-\epsilon$ for some constant ϵ
- So random walks on this expander mix very fast: for polynomially small r.p.d., $O(\log n)$ steps of random walk suffice.
- Note also that n can be huge, since only need to store one vertex $(O(\log n)$ bits).

