
0.1 Review 

general graphs: adjacent vertices: 

•	 lemma: for adjcaent (u, v), huv + hvu ≤ 2m 

•	 proof: new markov chain on edge traversed following vertex MC 

–	 transition matrix is doubly stochastic: column sums are 1 (exactly d(v) edges can 
transit to edge (v, w), each does so with probability 1/d(v)) 

–	 In homework, show such matrices have uniform stationary distribution. 

–	 Deduce πe = 1/2m. Thus hee = 2m. 

•	 So consider suppose original chain on vertex v. 

–	 suppose arrived via (u, v) 

–	 expected to traverse (u, v) again in 2m steps 

–	 at this point will have commuted u to v and back. 

– so conditioning on arrival method, commute time 2m (thanks to memorylessness) 

General graph cover time: 

•	 theorem: cover time O(mn) 

•	 proof: find a spanning tree 

•	 consider a dfs of tree-crosses each edge once in each direction, gives order v1, . . . , v2n−1 

•	 time for the vertices to be visited in this order is upper bounded by commute time 

•	 but vertices adjacent, so commute times O(m) 

•	 total time O(mn) 

•	 tight for lollipop, loose for line. 

Applications 

Testing graph connectivity in logspace. 

Deterministic algorithm (matrix squaring) gives log2 n space• 

Smarter algorithms gives log4/3 n space• 

•	 log n open 

• Randomized logspace achieves one-sided error 

universal traversal sequences. 
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•	 Define labelled graph 

•	 UTS covers any labelled graph 

•	 deterministic construction known for cycle only 

•	 we showed cover time O(n3) 

•	 so probability takes more than 2n3 to cover is 1/2 

•	 repeat k times. Prob fail 1/2k 

•	 How many graphs? (nd)O(nd) 

•	 So set k = O(nd log nd) 

• probabilistic method 

Nisan nO(log n) via pseudorandom generator that fools logspace machines. 

Markov Chains for Sampling 

Sampling: 

•	 Given complex state space 

•	 Want to sample from it


Use some Markov Chain
• 

•	 Run for a long time 

•	 end up “near” stationary distribution 

•	 Reduces sampling to local moves (easier) 

•	 no need for global description of state space 

• Allows sample from exponential state space 

Formalize: what is “near” and “long time”? 

•	 Stationary distribution π 

•	 arbitrary distribution q 

•	 relative pointwise distance (r.p.d.) maxj 

•	 Intuitively close. 

•	 Formally, suppose r.p.d. δ. 

•	 Then (1 − δ)π ≤ q 
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•	 So can express distribution q as “with probability 1 − δ, sample from π. Else, do 
something wierd. 

•	 So if δ small, “as if” sampling from π each time. 

•	 If δ poly small, can do poly samples without goof 

•	 Gives “almost stationary” sample from Markov Chain 

•	 Mixing Time: time to reduce r.p.d to some � 

Eigenvalues 

Method 1 for mixing time: Eigenvalues. 

Consider transition matrix P .• 

•	 Eigenvalues λ1 ≥ · · · ≥ λn 

•	 Corresponding Eigenvectors e1, . . . , en. 

•	 Any vector q can be written as aiei 

•	 Then qP = aiλiei 

•	 and qP k = aiλi
k ei 

•	 so sufficient to understand eigenvalues and vectors. 

•	 Is any |λi| > 1? 

–	 If so, eiP = λiP 

–	 let M be max entry of ei (in absolute value) 

–	 if λi > 1, then some eiP entry is λiM > M 

–	 any entry of eiP is a convex combo of values at most M , so max value M , 
contradiction. 

–	 Deduce: all eigenvalues of stochastic matrix at most 1. 

•	 How many λi = 1? 

–	 Stationary distribution (e1 = π) 

–	 if any others, could add a little bit of it to e1, get second stationary distribution 

–	 What about −1? Only if periodic. 

•	 so all other coordinates of eigenvalue decomposition decay as λk
i . 

•	 So if can show other λi small, converge to stationary distribution fast. 

•	 In particular, if λ2 < 1 − 1/poly, get polynomial mixing time 
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Expanders: 

Definition 

•	 bipartite 

•	 n vertices, regular degree d


Γ(S) ≥ (1 + c(1 − 2 S /n)) S
•	 | | | | | | 
factor c more neighbors, at least until S near n/2. 
Take random walk on (n, d, c) expander with constant c 

•	 add self loops (with probability 1/2 to deal with periodicity. 

•	 uniform stationary distribution 

•	 lemma: second eigenvalue 1 −O(1/d) 
2c

λ2 ≤ 1 − 
d(2048 + 4c2) 

•	 Intuition on convergence: because neighborhoods grow, position becomes unpredictable 
very fast. 

• proof: messy math 

Deduce: mixing time in expander is O(log n) to get � r.p.d. (since πi = 1/n) 
Converse theorem: if λ2 ≤ 1 − �, get expander with 

c ≥ 4(� − �2) 

Walks that mix fast are on expanders. 
Gabber-Galil expanders: 

•	 Do expanders exist? Yes! proof: probabilistic method. 

•	 But in this case, can do better deterministically. 

–	 Gabber Galil expanders. 

–	 Let n = 2m2 . Vertices are (x, y) where x, y ∈ Zm (one set per side) 

–	 5 neighbors: (x, y), (x, x + y), (x, x + y + 1), (x + y, y), (x + y + 1, y) (add mod m) 

– or 7 neighbors of similar form. 

Theorem: this d = 5 graph has c = (2 −
√

3)/4, degree 7 has twice the expansion. • 

•	 in other words, c and d are constant. 

•	 meaning λ2 = 1 − � for some constant � 

•	 So random walks on this expander mix very fast: for polynomially small r.p.d., O(log n) 
steps of random walk suffice. 

•	 Note also that n can be huge, since only need to store one vertex (O(log n) bits). 
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