Expanders:

Definition

- bipartite
- n vertices, regular degree d
- $|\Gamma(S)| \ge (1 + c(1 2|S|/n))|S|$

factor c more neighbors, at least until S near n/2. Take random walk on (n, d, c) expander with constant c

- add self loops (with probability 1/2 to deal with periodicity.
- uniform stationary distribution
- lemma: second eigenvalue 1 O(1/d)

$$\lambda_2 \le 1 - \frac{c^2}{d(2048 + 4c^2)}$$

- Intuition on convergence: because neighborhoods grow, position becomes unpredictable very fast.
- proof: messy math

Deduce: mixing time in expander is $O(\log n)$ to get ϵ r.p.d. (since $\pi_i = 1/n$) Converse theorem: if $\lambda_2 \leq 1 - \epsilon$, get expander with

$$c \ge 4(\epsilon - \epsilon^2)$$

Walks that mix fast are on expanders. Gabber-Galil expanders:

- Do expanders exist? Yes! proof: probabilistic method.
- But in this case, can do better deterministically.
 - Gabber Galil expanders.
 - Let $n = 2m^2$. Vertices are (x, y) where $x, y \in Z_m$ (one set per side)
 - 5 neighbors: (x, y), (x, x+y), (x, x+y+1), (x+y, y), (x+y+1, y) (add mod m)
 - or 7 neighbors of similar form.
- Theorem: this d = 5 graph has $c = (2 \sqrt{3})/4$, degree 7 has twice the expansion.
- in other words, c and d are constant.
- meaning $\lambda_2 = 1 \epsilon$ for some **constant** ϵ
- So random walks on this expander mix *very* fast: for polynomially small r.p.d., $O(\log n)$ steps of random walk suffice.
- Note also that n can be huge, since only need to store one vertex $(O(\log n) \text{ bits})$.

Application: conserving randomness.

- Consider an BPP algorithm (gives right answer with probability 99/100 (constant irrelevant) using n bits.
- t independent trials with majority rule reduce failure probability to $2^{-O(t)}$ (chernoff), but need tn bits
- in case of RP, used 2-point sampling to get error O(1/t) with 2n bits and t trials.
- Use walk instead.
 - vertices are $N = 2^n$ (*n*-bit) random strings for algorithm.
 - edges as degree-7 expander
 - only 1/100 of vertices are bad.
 - what is probability majority of time spent there?
 - in limit, spend 1/100 of time there
 - how fast converge to limit? How long must we run?
 - Power the markov chain so $\lambda_2^{\beta} \leq 1/10$ (constant number of steps)
 - use random seeds encountered every β steps.
- number of bits needed:
 - -O(n) for stationary starting point
 - -3β more per trial,
- Theorem: after 7k samples, probability majority wrong is $1/2^k$. So error $1/2^n$ with O(n) bits! (compare to naive)
 - Let *B* be powered transition matrix
 - let $p^{(i)}$ be distribution of sample *i*, namely $p^0 B^i$
 - Let W be indicator **matrix** for good witnesses, namely 1 at diagonal i if i is a witness. \overline{W} completementary set I W.
 - $\|p^i W\|_1$ is probability p^i is witness set. similar for nonwitness.
 - Consider a sequence of 7k results "witness or not"
 - represent as matrices $S = (S_1, \ldots, S_{7k}) \in \{W, \overline{W}\}^{7k}$
 - claim

$$\Pr[S] = \|p^{(0)}(BS_1)(BS_2)\cdots(BS_{7k})\|_1$$

(draw layered graph. sums prob. of paths through correct sequence of witness/nonwitness)

- Use 2-norm since easier to work with.

- * Note $||A||_1 \leq \sqrt{N} ||A||_2$
- $\ast\,$ For fixed sum of values, minimize sum of square by setting all equal
- * ie, for sum α , set all equal to α/N
- * 2-norm α/\sqrt{N}
- defer: $||pBW||_2 \le ||p||_2$ and $||pB\overline{W}||_2 \le \frac{1}{5}||p||_2$
- deduce if more than 7k/2 bad witnesses,

$$\begin{aligned} \|p^0 \prod BS_i\|_1 &\leq \sqrt{N} \|p^0 \prod BS_i\| \\ &\leq \sqrt{N} (\frac{1}{5})^{7k/2} \|p^0\| \\ &= (\frac{1}{5})^{7k/2} \end{aligned}$$

(since $||p_0|| = 1/\sqrt{N}$)

- At same time, only 2^{7k} bad sequences, so error prob. $2^{7k}5^{-7k/2} \le 2^{-k}$
- proof of lemma:
 - write $p = \sum a_i e_i$ with $e_1 = \pi$
 - obviously $||pBW|| \le ||pB||$ since W just zeros some stuff out.
 - But $||pB|| = \sqrt{\sum a_i^2 \lambda_i^2} \le \sum a_i^2 = ||p||$
 - Now write $p = a_1 \pi + y$ where $y \cdot \pi = 0$
 - argue that $\|\pi B\overline{W}\| \le \|\pi\|/10 \le \|p\|/10$ and $\|yB\overline{W}\| \le \|y\|/10 \le \|p\|/10$, done by pythagorous
 - First π :
 - * recall $\pi B = \pi$ is uniform vector, all coords 1/N, so norm $1/\sqrt{N}$
 - * \overline{W} has only 1/100 of coordintes nonzero, so

*
$$||e_1\overline{W}|| = \sqrt{(N/100)(1/N)} = 1/10$$

- Now y: just note $||yB|| \le ||y||/10$ since $\lambda_2 \le 1/10$. Then \overline{W} zeros out.
- summary: π part likely to be in good witness set, y part unlikely to be relevant.