Expanders:

Definition

- bipartite
- n vertices, regular degree d
- $|\Gamma(S)| \geq(1+c(1-2|S| / n))|S|$
factor c more neighbors, at least until S near $n / 2$.
Take random walk on (n, d, c) expander with constant c
- add self loops (with probability $1 / 2$ to deal with periodicity.
- uniform stationary distribution
- lemma: second eigenvalue $1-O(1 / d)$

$$
\lambda_{2} \leq 1-\frac{c^{2}}{d\left(2048+4 c^{2}\right)}
$$

- Intuition on convergence: because neighborhoods grow, position becomes unpredictable very fast.
- proof: messy math

Deduce: mixing time in expander is $O(\log n)$ to get ϵ r.p.d. (since $\pi_{i}=1 / n$)
Converse theorem: if $\lambda_{2} \leq 1-\epsilon$, get expander with

$$
c \geq 4\left(\epsilon-\epsilon^{2}\right)
$$

Walks that mix fast are on expanders.
Gabber-Galil expanders:

- Do expanders exist? Yes! proof: probabilistic method.
- But in this case, can do better deterministically.
- Gabber Galil expanders.
- Let $n=2 m^{2}$. Vertices are (x, y) where $x, y \in Z_{m}$ (one set per side)
- 5 neighbors: $(x, y),(x, x+y),(x, x+y+1),(x+y, y),(x+y+1, y)($ add $\bmod m)$
- or 7 neighbors of similar form.
- Theorem: this $d=5$ graph has $c=(2-\sqrt{3}) / 4$, degree 7 has twice the expansion.
- in other words, c and d are constant.
- meaning $\lambda_{2}=1-\epsilon$ for some constant ϵ
- So random walks on this expander mix very fast: for polynomially small r.p.d., $O(\log n)$ steps of random walk suffice.
- Note also that n can be huge, since only need to store one vertex $(O(\log n)$ bits).

Application: conserving randomness.

- Consider an BPP algorithm (gives right answer with probability 99/100 (constant irrelevant) using n bits.
- t independent trials with majority rule reduce failure probability to $2^{-O(t)}$ (chernoff), but need $t n$ bits
- in case of $R P$, used 2-point sampling to get error $O(1 / t)$ with $2 n$ bits and t trials.
- Use walk instead.
- vertices are $N=2^{n}$ (n-bit) random strings for algorithm.
- edges as degree-7 expander
- only $1 / 100$ of vertices are bad.
- what is probability majority of time spent there?
- in limit, spend $1 / 100$ of time there
- how fast converge to limit? How long must we run?
- Power the markov chain so $\lambda_{2}^{\beta} \leq 1 / 10$ (constant number of steps)
- use random seeds encountered every β steps.
- number of bits needed:
$-O(n)$ for stationary starting point
-3β more per trial,
- Theorem: after $7 k$ samples, probability majority wrong is $1 / 2^{k}$. So error $1 / 2^{n}$ with $O(n)$ bits! (compare to naive)
- Let B be powered transition matrix
- let $p^{(i)}$ be distribution of sample i, namely $p^{0} B^{i}$
- Let W be indicator matrix for good witnesses, namely 1 at diagonal i if i is a witness. \bar{W} completmentary set $I-W$.
- $\left\|p^{i} W\right\|_{1}$ is probability p^{i} is witness set. similar for nonwitness.
- Consider a sequence of $7 k$ results "witness or not"
- represent as matrices $S=\left(S_{1}, \ldots, S_{7 k}\right) \in\{W, \bar{W}\}^{7 k}$
- claim

$$
\operatorname{Pr}[S]=\left\|p^{(0)}\left(B S_{1}\right)\left(B S_{2}\right) \cdots\left(B S_{7 k}\right)\right\|_{1}
$$

(draw layered graph. sums prob. of paths through correct sequence of witness/nonwitness)

- Use 2-norm since easier to work with.
* Note $\|A\|_{1} \leq \sqrt{N}\|A\|_{2}$
* For fixed sum of values, minimize sum of square by setting all equal
* ie, for sum α, set all equal to α / N
* 2-norm α / \sqrt{N}
- defer: $\|p B W\|_{2} \leq\|p\|_{2}$ and $\|p B \bar{W}\|_{2} \leq \frac{1}{5}\|p\|_{2}$
- deduce if more than $7 k / 2$ bad witnesses,

$$
\begin{aligned}
\left\|p^{0} \prod B S_{i}\right\|_{1} & \leq \sqrt{N}\left\|p^{0} \prod B S_{i}\right\| \\
& \leq \sqrt{N}\left(\frac{1}{5}\right)^{7 k / 2}\left\|p^{0}\right\| \\
& =\left(\frac{1}{5}\right)^{7 k / 2}
\end{aligned}
$$

(since $\left\|p_{0}\right\|=1 / \sqrt{N}$)

- At same time, only $2^{7 k}$ bad sequences, so error prob. $2^{7 k} 5^{-7 k / 2} \leq 2^{-k}$
- proof of lemma:
- write $p=\sum a_{i} e_{i}$ with $e_{1}=\pi$
- obviously $\|p B W\| \leq\|p B\|$ since W just zeros some stuff out.
- But $\|p B\|=\sqrt{\sum a_{i}^{2} \lambda_{i}^{2}} \leq \sum a_{i}^{2}=\|p\|$
- Now write $p=a_{1} \pi+y$ where $y \cdot \pi=0$
- argue that $\|\pi B \bar{W}\| \leq\|\pi\| / 10 \leq\|p\| / 10$ and $\|y B \bar{W}\| \leq\|y\| / 10 \leq\|p\| / 10$, done by pythagorous
- First π :
* recall $\pi B=\pi$ is uniform vector, all coords $1 / N$, so norm $1 / \sqrt{N}$
* \bar{W} has only $1 / 100$ of coordintes nonzero, so
* $\left\|e_{1} \bar{W}\right\|=\sqrt{(N / 100)(1 / N)}=1 / 10$
- Now y : just note $\|y B\| \leq\|y\| / 10$ since $\lambda_{2} \leq 1 / 10$. Then \bar{W} zeros out.
- summary: π part likely to be in good witness set, y part unlikely to be relevant.

