
Counting Problems

Two big pieces:

1. Equivalence of counting and generating via self reducibility

2. Generating via Markov chains

Volume

Outline:

•	 Describe problem. Membership oracle

•	 �P hard to volume intersection of half spaces in n dimensions

•	 In low dimensions, integral.

•	 even for convex bodies, can’t do better than (n/ log n))n ratio

what about FPRAS?
•

Estimating π:

•	 pick random in unit square

check if in circle
•

•	 gives ratio of square to circle

•	 Extends to arbitrary shape with “membership oracle”

Problem: rare events.
•

• Circle has good easy outer box

Problem: rare events:

•	 In 2d, long skinny shapes

• In high d, even round shape has exponentially larger bounding box

Solution: “creep up” on volume

•	 modify P to contain unit sphere B1, contined in larger B2 of radius r with r/r1 poly
nomial

•	 choose ρ = 1 − 1/n.

•	 Consider sequence of bodies ρirP ∩ B2

•	 note for large i, get P

1

•	 but for i = 0, body contains B2

so volume known
•

•	 so just need ratios

• At each step, need to random sample from ρirP ∩ B2

Sample method: random walk forbidden to leave

•	 MC irreducible since body connected

•	 ensure aperiodic by staying put with prob. 1/2

•	 markov chain is “regular graph” so uniform stationary distribution

•	 eigenvalues show rapid mixing: after t steps, r.p.d at most

1

(1 −)t

1017n19

• eigenvalues small because body convex: no bottlenecks.

Observations:

•	 Key idea of self reducibility: compare size of sequence of “related” shapes, then tele
scope ratios.

•	 Sizes compared by sampling

•	 Sample by markov chain

wait: markov chain not exact?
•

•	 doesn’t matter: just get accurate to within (1 − 1/poly) in each step, product of errors
still tiny.

Application: Permanent

Counting perfect matchings

•	 Choose random n-edge set

•	 check if matching

•	 problem: rare event

• to solve, need sample space where matchings are dense

Idea: self reducibility by adding an edge (till reach complete graph)

•	 problem: don’t know how to generate random matching

2

Different idea: ratio of k-edge to k − 1-edge matchings

•	 telescope down to 1-edge matchings (self reduction)

•	 in dense graphs (degree n/2), ratio is at most m3 .

•	 map each k edge matching by removing an edge: n2 to 1

•	 map each k − 1 edge matching to k-edge matching by augmenting path of length at
most 3.

–	 take unmatched u and v

–	 if unmatched neighbor of u or v, done

–	 by u and v have n/2 neighbors, so if all matched, some neighbor b of u matched
to some neighbor a of v.

– so each size k matching “receives” at most m3 size k − 1 matchings.

Generate via random walk

•	 based on using uniform generation to do sampling.

•	 applies to minimum degree n/2

•	 Let Mk be k-edge matchings, �Mk � = mk

•	 algorithm estimates all ratios mk/mk−1, multiplies

•	 claim: ratio mk+1/mk polynomially bounded (dense).

•	 deduce sufficient to generate randomly from Mk ∪ Mk−1, test frequency of mk

•	 do so by random walk of local moves:

–	 with probability 1/2. stay still

–	 else Pick random edge e

–	 if in Mk and e matched, remove

–	 if in Mk−1 end e can be added, add.

–	 if in Mk , e = (u, v), u matched to w and v unmatched, then match u to w.

–	 else do nothing

–	 Note that exactly one applies

•	 Matrix is symmetric (undirected), so double stochastic, so stationary distribution is
uniform as desired.

•	 In text, prove λ2 = 1 − 1/nO(1) on an n vertex graph (by proving expansion property)

•	 so within nO(1) steps, rpd is polynomially small

• so can pretend stationary

Recently, extended to non-dense case.

3

| � �
�

Coupling:

Method

•	 Run two copies of Markov chain Xt, Yt

•	 Each considered in isolation is a copy of MC (that is, both have MC distribution)

•	 but they are not independent: they make dependent choices at each step

•	 in fact, after a while they are almost certainly the same

•	 Start Yt in stationary distribution, Xt anywhere

•	 Coupling argument:

Pr[Xt = j] = Pr[Xt = j | Xt = Yt] Pr[Xt = Yt] + Pr[Xt = j Xt = Yt] Pr[Xt = Yt]

= Pr[Yt = j] Pr[Xt = Yt] + � Pr[Xt = j | Xt = Yt]

So just need to make � (which is r.p.d.) small enough.

n-bit Hypercube walk: at each step, flip random bit to random value

•	 At step t, pick a random bit b, random value v

both chains set but b to value v
•

• after O(n log n) steps, probably all bits matched.

Counting k colorings when k > 2Δ + 1

•	 The reduction from (approximate) uniform generation

–	 compute ratio of coloring of G to coloring of G− e

–	 Recurse counting G− e colorings

–	 Base case kn colorings of empty graph

•	 Bounding the ratio:

–	 note G− e colorings outnumber G colorings

–	 By how much? Let L colorings in difference (u and v same color)

–	 to make an L coloring a G coloring, change u to one of k− Δ = Δ + 1 legal colors

–	 Each G-coloring arises at most one way from this

–	 So each L coloring has at least Δ + 1 neighbors unique to them

–	 So L is 1/(Δ + 1) fraction of G.

– So can estimate ratio with few samples

The chain:
•

4

� �

–	 Pick random vertex, random color, try to recolor

–	 loops, so aperiodic

–	 Chain is time-reversible, so uniform distribution.

•	 Coupling:

–	 choose random vertex v (same for both)

–	 based on Xt and Yt, choose bijection of colors

–	 choose random color c

–	 apply c to v in Xt (if can), g(c) to v in Yt (if can).

–	 What bijection?

∗	 Let A be vertices that agree in color, D that disagree.

∗	 if v ∈ D, let g be identity

∗	 if v ∈ A, let N be neighbors of v

∗	 let CX be colors that N has in X but not Y (X can’t use them at v)

∗	 let CY similar, wlog larger than CX

∗	 g should swap each CX with some CY , leave other colors fixed. Result: if
X doesn’t change, Y doesn’t

•	 Convergence:

–	 Let d�(v) be number of neighbors of v in opposite set, so

d�(v) = d�(v) = m�

v∈A v∈D

–	 Let δ = |D|
–	 Note at each step, δ changes by 0, ±1

–	 When does it increase?

v must be in A, but move to D∗

∗	 happens if only one MC accepts new color

∗	 If c not in CX or CY , then g(c) = c and both change

∗	 If c ∈ CX , then g(c) ∈ CY so neither moves

∗	 So must have c ∈ CY

∗	 But |CY
�(v), so probability this happens is | ≤ d � 1 d�(v) m�

=
n
·

k kn
v∈A

–	 When does it decrease?

∗	 must have v ∈ D, only one moves

5

∗ sufficient that pick color not in either neighborhood of v,

∗ total neighborhood size 2Δ, but that counts the d�(v) elements of A twice.

∗	 so Prob. � 1 k − (2Δ − d�(v)) k − 2Δ m�
= δ +

n
·

k kn kn
v∈D

– Deduce that expected change in δ is difference of above, namely

k − 2Δ
δ = −aδ. −

kn

– So after t steps, E[δt] ≤ (1 − a)tδ0 ≤ (1 − a)tn.

– Thus, probability δ > 0 at most (1 − a)tn.

– But now note a > 1/n2, so n2 log n steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

• From worm’s eye view, each chain is random walk

• so, all arguments hold

Counting vs. generating:

• we showed that by generating, can count

• by counting, can generate:

6

