Counting Problems

Two big pieces:

1. Equivalence of counting and generating via self reducibility
2. Generating via Markov chains

Volume

Outline:

- Describe problem. Membership oracle
- $\sharp P$ hard to volume intersection of half spaces in n dimensions
- In low dimensions, integral.
- even for convex bodies, can't do better than $(n / \log n))^{n}$ ratio
- what about FPRAS?

Estimating π :

- pick random in unit square
- check if in circle
- gives ratio of square to circle
- Extends to arbitrary shape with "membership oracle"
- Problem: rare events.
- Circle has good easy outer box

Problem: rare events:

- In $2 d$, long skinny shapes
- In high d, even round shape has exponentially larger bounding box

Solution: "creep up" on volume

- modify P to contain unit sphere B_{1}, contined in larger B_{2} of radius r with r / r_{1} polynomial
- choose $\rho=1-1 / n$.
- Consider sequence of bodies $\rho^{i} r P \cap B_{2}$
- note for large i, get P
- but for $i=0$, body contains B_{2}
- so volume known
- so just need ratios
- At each step, need to random sample from $\rho^{i} r P \cap B_{2}$

Sample method: random walk forbidden to leave

- MC irreducible since body connected
- ensure aperiodic by staying put with prob. $1 / 2$
- markov chain is "regular graph" so uniform stationary distribution
- eigenvalues show rapid mixing: after t steps, r.p.d at most

$$
\left(1-\frac{1}{10^{1} 7 n^{1} 9}\right)^{t}
$$

- eigenvalues small because body convex: no bottlenecks.

Observations:

- Key idea of self reducibility: compare size of sequence of "related" shapes, then telescope ratios.
- Sizes compared by sampling
- Sample by markov chain
- wait: markov chain not exact?
- doesn't matter: just get accurate to within ($1-1 /$ poly $)$ in each step, product of errors still tiny.

Application: Permanent

Counting perfect matchings

- Choose random n-edge set
- check if matching
- problem: rare event
- to solve, need sample space where matchings are dense

Idea: self reducibility by adding an edge (till reach complete graph)

- problem: don't know how to generate random matching

Different idea: ratio of k-edge to k - 1 -edge matchings

- telescope down to 1 -edge matchings (self reduction)
- in dense graphs (degree $n / 2$), ratio is at most m^{3}.
- map each k edge matching by removing an edge: n^{2} to 1
- map each $k-1$ edge matching to k-edge matching by augmenting path of length at most 3 .
- take unmatched u and v
- if unmatched neighbor of u or v, done
- by u and v have $n / 2$ neighbors, so if all matched, some neighbor b of u matched to some neighbor a of v.
- so each size k matching "receives" at most m^{3} size $k-1$ matchings.

Generate via random walk

- based on using uniform generation to do sampling.
- applies to minimum degree $n / 2$
- Let M_{k} be k-edge matchings, $\left\|M_{k}\right\|=m_{k}$
- algorithm estimates all ratios m_{k} / m_{k-1}, multiplies
- claim: ratio m_{k+1} / m_{k} polynomially bounded (dense).
- deduce sufficient to generate randomly from $M_{k} \cup M_{k-1}$, test frequency of m_{k}
- do so by random walk of local moves:
- with probability $1 / 2$. stay still
- else Pick random edge e
- if in M_{k} and e matched, remove
- if in M_{k-1} end e can be added, add.
- if in $M_{k}, e=(u, v)$, u matched to w and v unmatched, then match u to w.
- else do nothing
- Note that exactly one applies
- Matrix is symmetric (undirected), so double stochastic, so stationary distribution is uniform as desired.
- In text, prove $\lambda_{2}=1-1 / n^{O(1)}$ on an n vertex graph (by proving expansion property)
- so within $n^{O(1)}$ steps, rpd is polynomially small
- so can pretend stationary

Recently, extended to non-dense case.

Coupling:

Method

- Run two copies of Markov chain X_{t}, Y_{t}
- Each considered in isolation is a copy of MC (that is, both have MC distribution)
- but they are not independent: they make dependent choices at each step
- in fact, after a while they are almost certainly the same
- Start Y_{t} in stationary distribution, X_{t} anywhere
- Coupling argument:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{t}=j\right] & =\operatorname{Pr}\left[X_{t}=j \mid X_{t}=Y_{t}\right] \operatorname{Pr}\left[X_{t}=Y_{t}\right]+\operatorname{Pr}\left[X_{t}=j \mid X_{t} \neq Y_{t}\right] \operatorname{Pr}\left[X_{t} \neq Y_{t}\right] \\
& =\operatorname{Pr}\left[Y_{t}=j\right] \operatorname{Pr}\left[X_{t}=Y_{t}\right]+\epsilon \operatorname{Pr}\left[X_{t}=j \mid X_{t} \neq Y_{t}\right]
\end{aligned}
$$

So just need to make ϵ (which is r.p.d.) small enough.
n-bit Hypercube walk: at each step, flip random bit to random value

- At step t, pick a random bit b, random value v
- both chains set but b to value v
- after $O(n \log n)$ steps, probably all bits matched.

Counting k colorings when $k>2 \Delta+1$

- The reduction from (approximate) uniform generation
- compute ratio of coloring of G to coloring of $G-e$
- Recurse counting $G-e$ colorings
- Base case k^{n} colorings of empty graph
- Bounding the ratio:
- note $G-e$ colorings outnumber G colorings
- By how much? Let L colorings in difference (u and v same color)
- to make an L coloring a G coloring, change u to one of $k-\Delta=\Delta+1$ legal colors
- Each G-coloring arises at most one way from this
- So each L coloring has at least $\Delta+1$ neighbors unique to them
- So L is $1 /(\Delta+1)$ fraction of G.
- So can estimate ratio with few samples
- The chain:
- Pick random vertex, random color, try to recolor
- loops, so aperiodic
- Chain is time-reversible, so uniform distribution.
- Coupling:
- choose random vertex v (same for both)
- based on X_{t} and Y_{t}, choose bijection of colors
- choose random color c
- apply c to v in X_{t} (if can), $g(c)$ to v in Y_{t} (if can).
- What bijection?
* Let A be vertices that agree in color, D that disagree.
* if $v \in D$, let g be identity
* if $v \in A$, let N be neighbors of v
* let C_{X} be colors that N has in X but not Y (X can't use them at v)
* let C_{Y} similar, wlog larger than C_{X}
* g should swap each C_{X} with some C_{Y}, leave other colors fixed. Result: if X doesn't change, Y doesn't
- Convergence:
- Let $d^{\prime}(v)$ be number of neighbors of v in opposite set, so

$$
\sum_{v \in A} d^{\prime}(v)=\sum_{v \in D} d^{\prime}(v)=m^{\prime}
$$

- Let $\delta=|D|$
- Note at each step, δ changes by $0, \pm 1$
- When does it increase?
* v must be in A, but move to D
* happens if only one MC accepts new color
* If c not in C_{X} or C_{Y}, then $g(c)=c$ and both change
* If $c \in C_{X}$, then $g(c) \in C_{Y}$ so neither moves
* So must have $c \in C_{Y}$
* But $\left|C_{Y}\right| \leq d^{\prime}(v)$, so probability this happens is

$$
\sum_{v \in A} \frac{1}{n} \cdot \frac{d^{\prime}(v)}{k}=\frac{m^{\prime}}{k n}
$$

- When does it decrease?
* must have $v \in D$, only one moves
* sufficient that pick color not in either neighborhood of v,
* total neighborhood size 2Δ, but that counts the $d^{\prime}(v)$ elements of A twice.
* so Prob.

$$
\sum_{v \in D} \frac{1}{n} \cdot \frac{k-\left(2 \Delta-d^{\prime}(v)\right)}{k}=\frac{k-2 \Delta}{k n} \delta+\frac{m^{\prime}}{k n}
$$

- Deduce that expected change in δ is difference of above, namely

$$
-\frac{k-2 \Delta}{k n} \delta=-a \delta .
$$

- So after t steps, $E\left[\delta_{t}\right] \leq(1-a)^{t} \delta_{0} \leq(1-a)^{t} n$.
- Thus, probability $\delta>0$ at most $(1-a)^{t} n$.
- But now note $a>1 / n^{2}$, so $n^{2} \log n$ steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

- From worm's eye view, each chain is random walk
- so, all arguments hold

Counting vs. generating:

- we showed that by generating, can count
- by counting, can generate:

