Geometry

Model

- RAM
- operations on reals, including sqrts.
- (why OK)
- line segment intersections
- DISCRETE randomization

Applications:

- graphics of course
- any domain where few variables, many constraints

Point location in line arrangements

setup:

- n lines in plane
- gives $O\left(n^{2}\right)$ convex regions
- goal: given point, find containing region.
- for convenience, use triangulated $T(L)$
- triangulation introduces $O\left(n^{2}\right)$ segments (planar graph)
- assume all inside a bounding triangle
how about a binary space partition?
- single line splits input into two groups of n-1 rays
- search time (depth) could be n

A good algorithm:

- choose r random lines R, triangulate
- inside each triangle, some lines.
- good if each triangle has only $a n(\log r) / r$ lines in it
- will show good with prob. $1 / 2$
- recurse in each triangle - halves lines

Lookup method: $O(\log n)$ time.
Proof of good

- As with cut sampling, consider individual "problem" events, show unlikely
- Let Δ be all triplets of L-intersections
- when $\delta \in \Delta$ is bad:
- let $I(\delta)$ be number of lines hitting δ
- let $G(\delta)$ be lines that induce δ (at most 6)
- for bad δ, must have all lines of $G(\delta)$ in R (call this $B_{1}(\delta)$), no lines of $I(\delta)$ in R (call this $B_{2}(\delta)$.
- bound prob. of bad δ :
- we know

$$
\operatorname{Pr}[\delta] \leq \operatorname{Pr}\left[B_{1}(\delta)\right] \operatorname{Pr}\left[B_{2}(\delta) \mid B_{1}(\delta)\right]
$$

(why not equal? Because triangulation may not create triangle from δ)

- Given $B_{1}(\delta)$, still need $r-|G(\delta)| \geq r-6 \geq r / 2$ drawings (assuming $r>12$)
- prob. none picked is at most

$$
\left(1-\frac{|I(\delta)|}{n}\right)^{r / 2} \leq e^{-r I(\delta) / 2 n}
$$

- Only care if $I(\delta)>a n(\log r) / r$-large triplets
$-\operatorname{Pr}\left[B_{2}(\delta) \mid B_{1}(\delta)\right] \leq r^{-a / 2}$ for large triplet
- prob. some bad at most

$$
r^{-a / 2} \sum_{\delta} \operatorname{Pr}\left[B_{1}(\delta)\right]
$$

- sum is expected number of large triplets.
- at most r^{2} points in sample
- at most $\left(r^{2}\right)^{3}=r^{6}$ triplets in sample
- expectation at most r^{6}
- choose $a>12$, deduce result.

Construction time:

- Recurrence

$$
T(n) \leq n^{2}+c r^{2} T\left(a n \frac{\log r}{r}\right)=O\left(n^{2+\epsilon(r)}\right)
$$

- ϵ decreasing with r
- by choosing large r, arbitrarily close to $O\left(n^{2}\right)$

Randomized incremental construction

Special sampling idea:

- Sample all except one item
- hope final addition makes small or no change

Method:

- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Randomized incremental sorting

- Funny implementation of quicksort
- repeated insert of item into so-far-sorted
- each yet-uninserted item points to "destination interval" in current partition
- bidirectional pointers (interval points back to all contained items)
- when insert x to I,
- splits interval I (x is "pivot" for I)
- must update all I-pointers to one of two new intervals
- finding items in I easy (since back pointers)
- work proportional to size of I
- If analyze insertions, bigger intervals more likely to update; lots of quadratic terms.

Backwards analysis

- run algorithm backwards
- at each step, choose random element to un-insert
- find expected work
- works because:
- condition on what first i objects are
- which is $i^{\text {th }}$ is random
- discover didn't actually matter what first i items are.

Apply analysis to Sorting:

- at step i, delete random of i sorted elements
- un-update pointers in adjacent intervals
- each pointer has $2 / i$ chance of being un-updated
- expected work $O(n / i)$.
- true whichever are i elements.
- sum over i, get $O(n \log n)$
- compare to trouble analyzing insertion
- large intervals more likely to get new insertion
- for some prefixes, must do $n-i$ updates at step i.

Convex Hulls

Define

- assume no 3 points on straight line.
- output:
- points and edges on hull
- in counterclockwise order
- can leave out edges by hacking implementation
$\Omega(n \log n)$ lower bound via sorting algorithm (RIC):
- random order p_{i}
- insert one at a time (to get S_{i})
- update $\operatorname{conv}\left(S_{i-1}\right) \rightarrow \operatorname{conv}\left(S_{i}\right)$
- new point stretches convex hull
- remove new non-hull points
- revise hull structure

Data structure:

- point p_{0} inside hull (how find? centroid of 3 vertices.)
- for each p, edge of $\operatorname{conv}\left(S_{i}\right)$ hit by $\overrightarrow{p_{0} p}$
- say p cuts this edge
- To update p_{i} in $\operatorname{conv}\left(S_{i-1}\right)$:
- if p_{i} inside, discard
- delete new non hull vertices and edges
- 2 vertices v_{1}, v_{2} of $\operatorname{conv}\left(S_{i-1}\right)$ become p_{i}-neighbors
- other vertices unchanged.
- To implement:
- detect changes by moving out from edge cut by $\overrightarrow{p_{0} p}$.
- for each hull edge deleted, must update cut-pointers to $p_{i} \vec{v}_{1}$ or $p_{i} \vec{v}_{2}$

Runtime analysis

- deletion cost of edges:
- charge to creation cost
- 2 edges created per step
- total work $O(n)$
- pointer update cost
- proportional to number of pointers crossing a deleted cut edge
- backwards analysis
* run backwards
* delete random point of $S_{i}\left(\right.$ not $\left.\operatorname{conv}\left(S_{i}\right)\right)$ to get S_{i-1}
* same number of pointers updated
* expected number $O(n / i)$
- what $\operatorname{Pr}[$ update $p]$?
- $\operatorname{Pr}[$ delete cut edge of $p]$
- $\operatorname{Pr}[$ delete endpoint edge of $p]$
- $2 / i$
* deduce $O(n \log n)$ runtime

Book studies 3d convex hull using same idea, time $O(n \log n)$, also gets voronoi diagram and Delauney triangulations.

