Randomized incremental construction

Special sampling idea:

- Sample all *except* one item
- hope final addition makes small or no change

Method:

- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Backwards analysis

- compute expected time to insert $S_{i-1} \to S_i$
- backwards: time to delete $S_i \to S_{i-1}$
- conditions on S_i
- but generally analysis doesn't care what S_i is.

Randomized incremental sorting

Funny implementation of quicksort

- repeated insert of item into so-far-sorted
- each yet-uninserted item points to "destination interval" in current partition
- bidirectional pointers (interval points back to all contained items)
- when insert x to I,
 - splits interval I (x is "pivot" for I)
 - must update all *I*-pointers to one of two new intervals
 - finding items in I easy (since back pointers)
 - work proportional to size of I
- If analyze insertions, bigger intervals more likely to update; lots of quadratic terms.

Backwards analysis

- run algorithm backwards
- at each step, choose random element to un-insert

- find expected work
- works because:
 - condition on what first *i* objects are
 - which is i^{th} is random
 - discover didn't actually matter what first i items are.

Apply analysis to Sorting:

- at step i, delete random of i sorted elements
- un-update pointers in adjacent intervals
- each pointer has 2/i chance of being un-updated
- expected work O(n/i).
- true whichever are i elements.
- sum over i, get $O(n \log n)$
- compare to trouble analyzing insertion
 - large intervals more likely to get new insertion
 - for some prefixes, must do n i updates at step i.

Convex Hulls

Define

- assume no 3 points on straight line.
- output:
 - points and edges on hull
 - in counterclockwise order
 - can leave out edges by hacking implementation

 $\Omega(n \log n)$ lower bound via sorting algorithm (RIC):

- random order p_i
- insert one at a time (to get S_i)
- update $conv(S_{i-1}) \rightarrow conv(S_i)$
 - new point stretches convex hull

- remove new non-hull points
- revise hull structure

Data structure:

- point p_0 inside hull (how find? centroid of 3 vertices.)
- for each p, edge of $conv(S_i)$ hit by $\vec{p_0p}$
- say *p* cuts this edge
- To update p_i in $conv(S_{i-1})$:
 - if p_i inside, discard
 - delete new non hull vertices and edges
 - -2 vertices v_1, v_2 of $conv(S_{i-1})$ become p_i -neighbors
 - other vertices unchanged.
- To implement:
 - detect changes by moving out from edge cut by $p_{0}\vec{p}$.
 - for each hull edge deleted, must update cut-pointers to $p_i \vec{v}_1$ or $p_i \vec{v}_2$

Runtime analysis

- deletion cost of edges:
 - charge to creation cost
 - 2 edges created per step
 - total work O(n)
- pointer update cost
 - proportional to number of pointers crossing a deleted cut edge
 - **backwards** analysis
 - $\ast\,$ run backwards
 - * delete random point of S_i (**not** $conv(S_i)$) to get S_{i-1}
 - * same number of pointers updated
 - * expected number O(n/i)
 - what $\Pr[\text{update } p]$?
 - \cdot Pr[delete cut edge of p]
 - · $\Pr[\text{delete endpoint edge of } p]$
 - $\cdot 2/i$
 - * deduce $O(n \log n)$ runtime
- Book studies 3d convex hull using same idea, time $O(n \log n)$, also gets voronoi diagram and Delauney triangulations.

Linear programming.

- $\bullet~{\rm define}$
- assumptions:
 - nonempty, bounded polyhedron
 - minimizing x_1
 - unique minimum, at a vertex
 - exactly d constraints per vertex
- definitions:
 - hyperplanes H
 - basis B(H)
 - optimum O(H)
- Simplex
 - exhaustive polytope search:
 - walks on vertices
 - runs in $O(n^{d/2})$ time in theory
 - often great in practice
- polytime algorithms exist, but bit-dependent!
- OPEN: strongly polynomial LP
- goal today: polynomial algorithms for small d

Randomized incremental algorithm

$$T(n) \le T(n-1,d) + \frac{d}{n}(O(dn) + T(n-1,d-1)) = O(d!n)$$