
Randomized incremental construction 

Special sampling idea: 

•	 Sample all except one item 

• hope final addition makes small or no change 

Method: 

•	 process items in order 

•	 average case analysis 

•	 randomize order to achieve average case 

• e.g. binary tree for sorting 

Backwards analysis 

•	 compute expected time to insert Si−1 → Si 

•	 backwards: time to delete Si → Si−1 

•	 conditions on Si 

•	 but generally analysis doesn’t care what Si is. 

Trapezoidal decomposition: 

Motivation: 

•	 manipulate/analayze a collection of n segments 

•	 assume no degeneracy: endpoints distinct 

•	 (simulate touch by slight crossover) 

•	 e.g. detect segment intersections 

•	 e.g., point location data structure


Basic idea:
• 

–	 Draw verticals at all points and intersects 

–	 Divides space into slabs 

–	 binary search on x coordinate for slab 

–	 binary search on y coordinate inside slab (feasible since lines noncrossing) 

– problem: Θ(n2) space 

Definition. 
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•	 draw altitudes from each endpoints and intersection till hit a segment. 

•	 trapezoid graph is planar (no crossing edges) 

•	 each trapezoid is a face


show a face.
• 

• one face may have many vertices (from altitudes that hit the outside of the face) 

•	 but max vertex degree is 6 (assuming nondegeneracy) 

•	 so total space O(n + k) for k intersections. 

•	 number of faces also O(n + k) (at least one edge/face, at most 2 face/edge) 

•	 (or use Euler’s theorem: nv − ne + nf ≥ 2) 

• standard clockwise pointer representation lets you walk around a face 

Randomized incremental construction: 

•	 to insert segment, start at left endpoint 

•	 draw altitudes from left end (splits a trapezoid) 

•	 traverse segment to right endpoint, adding altitudes whenever intersect 

• traverse again, erasing (half of) altitudes cut by segment 

Implementation 

•	 clockwise ordering of neighbors allows traversal of a face in time proportional to number 
of vertices 

•	 for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face 

•	 to insert line, start at face containing left endpoint


traverse face to see where leave it
• 

•	 create intersection, 

–	 update face (new altitude splits in half) 

–	 update left-end pointers 

•	 segment cuts some altititudes: destroy half 

–	 removing altitude merges faces 

–	 update left-end pointers 

–	 (note nonmonotonic growth of data structure) 
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Analysis: 

• Overall, update left-end-pointers in faces neighboring new line 

time to insert s is• 

(n(f ) + �(f )) 
f ∈F (s) 

where 

– F (s) is faces s bounds after insertion 

– n(f ) is number of vertices on face f boundary 

– �(f ) is number of left-ends inside f . 

• So if Si is first i segments inserted, expected work of insertion i is 

1 � 
(n(f ) + �(f ))

i 
s∈Si f ∈F (s) 

• Note each f appears at most 4 times in sum since at most 4 lines define each trapezoid. 

• so O( 1 
i f (n(f ) + �(f ))). 

• Bound endpoint contribution: 

– note �(f ) = n − if 

– so contributes n/i 

– so total O(n log n) (tight to sorting lower bound) 

Bound intersection contribution • 

– n(f ) is just number of vertices in planar graph 

– So O(ki + i) if ki intersections between segments so far 

– so cost is E[ki] 

– intersection present if both segments in first i insertions 

– so expected cost is O((i2/n2)k) 

– so cost contribution (i/n2)k 

– sum over i, get O(k) 

– note: adding to RIC, assumption that first i items are random. 

• Total: O(n log n + k) 
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Search structure 

Starting idea: 

•	 extend all vertical lines infinitely 

•	 divides space into slabs 

•	 binary search to find place in slab 

•	 binary search in slab feasible since lines in slab have total order 

• O(log n) search time 

Goal: apply binary search in slabs, without n2 space 

•	 Idea: trapezoidal decom is “important” part of vertical lines 

•	 problem: slab search no longer well defined


but we show ok
• 

The structure: 

A kind of search tree • 

•	 “x nodes” test against an altitude 

•	 “y nodes” test against a segment 

•	 leaves are trapezoids


each node has two children
• 

• But may have many parents 

Inserting an edge contained in a trapezoid 

•	 update trapezoids 

• build a 4-node subtree to replace leaf 

Inserting an edge that crosses trapezoids 

•	 sequence of traps Δi 

•	 Say Δ0 has left endpoint, replace leaf with x-node for left endpoint and y-node for new 
segment 

Same for last Δ • 

middle Δ: • 

–	 each got a piece cut off 
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–	 cut off piece got merged to adjacent trapezoid 

–	 Replace each leaf with a y node for new segment 

–	 two children point to appropriate traps 

– merged trap will have several parents—one from each premerge trap. 

Search time analysis 

•	 depth increases by one for new trapezoids 

•	 RIC argument shows depth O(log n) 

–	 Fix search point q, build data structure 

–	 Length of search path increased on insertion only if trapezoid containing q changes 

–	 Odds of top or bottom edge vanishing (backwards analysis) are 1/i 

–	 Left side vanishes iff unique segment defines that side and it vanishes 

–	 So prob. 1/i 

–	 Total O(1/i) for ith insert, so O(log n) overall. 

Treaps 

Dictionaries for ordered sets 

•	 New Operations. 

–	 enumerate in order 

–	 successor-of, predecessor-of (even if not in set) 

– join(S, k, T ), split, paste(S, T ) 

Binary tree. 

•	 child and parent pointers 

•	 endogenous: leaf nodes empty. 

•	 balanced if depth O(log n) 

•	 average case.


worst case
• 

Tree balancing 

•	 rotations (show) 

•	 implementing operations. 

•	 red/black, AVL 
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•	 splay trees. 

–	 drawbacks in geometry: 

–	 auxiliary structure on nodes in subtree (eg, for remaining dimensions) 

– rebuild on rotation 

Returning to average case: 

•	 Assign random “arrival orders” to keys


Build tree as if arrived in that order
• 

•	 Average case applies


No rotations on searches
• 

Choosing priorities 

•	 define arrival by random priorities 

•	 assume continuous distribution, fix. 

• eg, use 2 log n bits, w.h.p. no collisions 

Treaps. 

•	 tree has keys in heap order of priorities 

•	 unique tree given priorities—follows from insertion order 

•	 implement insert/delete etc. 

• rotations to maintain heap property 

Depth d(x) analysis 

•	 Tree is trace of a quicksort 

• We proved O(log n) w.h.p. 

lemma: for x rank k, E[d(x)] = Hk + Hn−k+1 − 1 

•	 S− = {y ∈ S y ≤ x| } 

•	 Qx = ancestors of x 

•	 Show E[Q−] = Hk .x 

•	 to show: y ∈ Q− iff inserted before all z, y < z ≤ x.x 

•	 deduce: item j away has prob 1/j. Add. 

•	 Suppose y ∈ Q−.x 
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–	 Then inserted before x 

–	 Suppose some z between inserted before y 

–	 Then y in left subtree of z, x in right, so not ancestor 

–	 Thus, y before every z 

•	 Suppose y first 

–	 then x follows y on all comparisons (no z splits 

– So ends up in subtree of y 

Rotation analysis 

•	 Insert/Delete time 

–	 define spines 

–	 equal left spine of right sub plus right spine of left sub 

–	 proof: when rotate up, one spine increments, other stays fixed. 

•	 Rx length of right spine of left subtree 

•	 E[Rx] = 1 − 1/k if rank k 

•	 To show: y ∈ Rx iff 

–	 inserted after x 

–	 but before all z, y < z < x 

–	 sinceif z before y, then y goes left, so not on spine 

•	 deduce: if r elts between, r! of (r + 2)! permutations work. 

•	 So probability 1/(r + 1)(r + 2). 

•	 Expectation 1/(1 · 2) + 1/(2 · 3) + · · · = 1 − 1/k 

•	 subtle: do analysis only on elements inserted in real-time before x, but now assume 
they arrive in random order in virtual priorities. 
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