
Randomized incremental construction

Special sampling idea:

•	 Sample all except one item

• hope final addition makes small or no change

Method:

•	 process items in order

•	 average case analysis

•	 randomize order to achieve average case

• e.g. binary tree for sorting

Backwards analysis

•	 compute expected time to insert Si−1 → Si

•	 backwards: time to delete Si → Si−1

•	 conditions on Si

•	 but generally analysis doesn’t care what Si is.

Trapezoidal decomposition:

Motivation:

•	 manipulate/analayze a collection of n segments

•	 assume no degeneracy: endpoints distinct

•	 (simulate touch by slight crossover)

•	 e.g. detect segment intersections

•	 e.g., point location data structure

Basic idea:
•

–	 Draw verticals at all points and intersects

–	 Divides space into slabs

–	 binary search on x coordinate for slab

–	 binary search on y coordinate inside slab (feasible since lines noncrossing)

– problem: Θ(n2) space

Definition.

1

•	 draw altitudes from each endpoints and intersection till hit a segment.

•	 trapezoid graph is planar (no crossing edges)

•	 each trapezoid is a face

show a face.
•

• one face may have many vertices (from altitudes that hit the outside of the face)

•	 but max vertex degree is 6 (assuming nondegeneracy)

•	 so total space O(n + k) for k intersections.

•	 number of faces also O(n + k) (at least one edge/face, at most 2 face/edge)

•	 (or use Euler’s theorem: nv − ne + nf ≥ 2)

• standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:

•	 to insert segment, start at left endpoint

•	 draw altitudes from left end (splits a trapezoid)

•	 traverse segment to right endpoint, adding altitudes whenever intersect

• traverse again, erasing (half of) altitudes cut by segment

Implementation

•	 clockwise ordering of neighbors allows traversal of a face in time proportional to number
of vertices

•	 for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face

•	 to insert line, start at face containing left endpoint

traverse face to see where leave it
•

•	 create intersection,

–	 update face (new altitude splits in half)

–	 update left-end pointers

•	 segment cuts some altititudes: destroy half

–	 removing altitude merges faces

–	 update left-end pointers

–	 (note nonmonotonic growth of data structure)

2

�

�

�

�

�

Analysis:

• Overall, update left-end-pointers in faces neighboring new line

time to insert s is•

(n(f) + �(f))
f ∈F (s)

where

– F (s) is faces s bounds after insertion

– n(f) is number of vertices on face f boundary

– �(f) is number of left-ends inside f .

• So if Si is first i segments inserted, expected work of insertion i is

1 �
(n(f) + �(f))

i
s∈Si f ∈F (s)

• Note each f appears at most 4 times in sum since at most 4 lines define each trapezoid.

• so O(1
i f (n(f) + �(f))).

• Bound endpoint contribution:

– note �(f) = n − if

– so contributes n/i

– so total O(n log n) (tight to sorting lower bound)

Bound intersection contribution •

– n(f) is just number of vertices in planar graph

– So O(ki + i) if ki intersections between segments so far

– so cost is E[ki]

– intersection present if both segments in first i insertions

– so expected cost is O((i2/n2)k)

– so cost contribution (i/n2)k

– sum over i, get O(k)

– note: adding to RIC, assumption that first i items are random.

• Total: O(n log n + k)

3

Search structure

Starting idea:

•	 extend all vertical lines infinitely

•	 divides space into slabs

•	 binary search to find place in slab

•	 binary search in slab feasible since lines in slab have total order

• O(log n) search time

Goal: apply binary search in slabs, without n2 space

•	 Idea: trapezoidal decom is “important” part of vertical lines

•	 problem: slab search no longer well defined

but we show ok
•

The structure:

A kind of search tree •

•	 “x nodes” test against an altitude

•	 “y nodes” test against a segment

•	 leaves are trapezoids

each node has two children
•

• But may have many parents

Inserting an edge contained in a trapezoid

•	 update trapezoids

• build a 4-node subtree to replace leaf

Inserting an edge that crosses trapezoids

•	 sequence of traps Δi

•	 Say Δ0 has left endpoint, replace leaf with x-node for left endpoint and y-node for new
segment

Same for last Δ •

middle Δ: •

–	 each got a piece cut off

4

–	 cut off piece got merged to adjacent trapezoid

–	 Replace each leaf with a y node for new segment

–	 two children point to appropriate traps

– merged trap will have several parents—one from each premerge trap.

Search time analysis

•	 depth increases by one for new trapezoids

•	 RIC argument shows depth O(log n)

–	 Fix search point q, build data structure

–	 Length of search path increased on insertion only if trapezoid containing q changes

–	 Odds of top or bottom edge vanishing (backwards analysis) are 1/i

–	 Left side vanishes iff unique segment defines that side and it vanishes

–	 So prob. 1/i

–	 Total O(1/i) for ith insert, so O(log n) overall.

Treaps

Dictionaries for ordered sets

•	 New Operations.

–	 enumerate in order

–	 successor-of, predecessor-of (even if not in set)

– join(S, k, T), split, paste(S, T)

Binary tree.

•	 child and parent pointers

•	 endogenous: leaf nodes empty.

•	 balanced if depth O(log n)

•	 average case.

worst case
•

Tree balancing

•	 rotations (show)

•	 implementing operations.

•	 red/black, AVL

5

•	 splay trees.

–	 drawbacks in geometry:

–	 auxiliary structure on nodes in subtree (eg, for remaining dimensions)

– rebuild on rotation

Returning to average case:

•	 Assign random “arrival orders” to keys

Build tree as if arrived in that order
•

•	 Average case applies

No rotations on searches
•

Choosing priorities

•	 define arrival by random priorities

•	 assume continuous distribution, fix.

• eg, use 2 log n bits, w.h.p. no collisions

Treaps.

•	 tree has keys in heap order of priorities

•	 unique tree given priorities—follows from insertion order

•	 implement insert/delete etc.

• rotations to maintain heap property

Depth d(x) analysis

•	 Tree is trace of a quicksort

• We proved O(log n) w.h.p.

lemma: for x rank k, E[d(x)] = Hk + Hn−k+1 − 1

•	 S− = {y ∈ S y ≤ x| }

•	 Qx = ancestors of x

•	 Show E[Q−] = Hk .x

•	 to show: y ∈ Q− iff inserted before all z, y < z ≤ x.x

•	 deduce: item j away has prob 1/j. Add.

•	 Suppose y ∈ Q−.x

6

�

–	 Then inserted before x

–	 Suppose some z between inserted before y

–	 Then y in left subtree of z, x in right, so not ancestor

–	 Thus, y before every z

•	 Suppose y first

–	 then x follows y on all comparisons (no z splits

– So ends up in subtree of y

Rotation analysis

•	 Insert/Delete time

–	 define spines

–	 equal left spine of right sub plus right spine of left sub

–	 proof: when rotate up, one spine increments, other stays fixed.

•	 Rx length of right spine of left subtree

•	 E[Rx] = 1 − 1/k if rank k

•	 To show: y ∈ Rx iff

–	 inserted after x

–	 but before all z, y < z < x

–	 sinceif z before y, then y goes left, so not on spine

•	 deduce: if r elts between, r! of (r + 2)! permutations work.

•	 So probability 1/(r + 1)(r + 2).

•	 Expectation 1/(1 · 2) + 1/(2 · 3) + · · · = 1 − 1/k

•	 subtle: do analysis only on elements inserted in real-time before x, but now assume
they arrive in random order in virtual priorities.

7

