Randomized incremental construction

Special sampling idea:

- Sample all except one item
- hope final addition makes small or no change

Method:

- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Backwards analysis

- compute expected time to insert $S_{i-1} \rightarrow S_{i}$
- backwards: time to delete $S_{i} \rightarrow S_{i-1}$
- conditions on S_{i}
- but generally analysis doesn't care what S_{i} is.

Trapezoidal decomposition:

Motivation:

- manipulate/analayze a collection of n segments
- assume no degeneracy: endpoints distinct
- (simulate touch by slight crossover)
- e.g. detect segment intersections
- e.g., point location data structure
- Basic idea:
- Draw verticals at all points and intersects
- Divides space into slabs
- binary search on x coordinate for slab
- binary search on y coordinate inside slab (feasible since lines noncrossing)
- problem: $\Theta\left(n^{2}\right)$ space

Definition.

- draw altitudes from each endpoints and intersection till hit a segment.
- trapezoid graph is planar (no crossing edges)
- each trapezoid is a face
- show a face.
- one face may have many vertices (from altitudes that hit the outside of the face)
- but max vertex degree is 6 (assuming nondegeneracy)
- so total space $O(n+k)$ for k intersections.
- number of faces also $O(n+k)$ (at least one edge/face, at most 2 face/edge)
- (or use Euler's theorem: $n_{v}-n_{e}+n_{f} \geq 2$)
- standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:

- to insert segment, start at left endpoint
- draw altitudes from left end (splits a trapezoid)
- traverse segment to right endpoint, adding altitudes whenever intersect
- traverse again, erasing (half of) altitudes cut by segment

Implementation

- clockwise ordering of neighbors allows traversal of a face in time proportional to number of vertices
- for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face
- to insert line, start at face containing left endpoint
- traverse face to see where leave it
- create intersection,
- update face (new altitude splits in half)
- update left-end pointers
- segment cuts some altititudes: destroy half
- removing altitude merges faces
- update left-end pointers
- (note nonmonotonic growth of data structure)

Analysis:

- Overall, update left-end-pointers in faces neighboring new line
- time to insert s is

$$
\sum_{f \in F(s)}(n(f)+\ell(f))
$$

where

- $F(s)$ is faces s bounds after insertion
$-n(f)$ is number of vertices on face f boundary
- $\ell(f)$ is number of left-ends inside f.
- So if S_{i} is first i segments inserted, expected work of insertion i is

$$
\frac{1}{i} \sum_{s \in S_{i}} \sum_{f \in F(s)}(n(f)+\ell(f))
$$

- Note each f appears at most 4 times in sum since at most 4 lines define each trapezoid.
- so $O\left(\frac{1}{i} \sum_{f}(n(f)+\ell(f))\right)$.
- Bound endpoint contribution:
$-\operatorname{note} \sum_{f} \ell(f)=n-i$
- so contributes n / i
- so total $O(n \log n)$ (tight to sorting lower bound)
- Bound intersection contribution
- $\sum n(f)$ is just number of vertices in planar graph
- So $O\left(k_{i}+i\right)$ if k_{i} intersections between segments so far
- so cost is $E\left[k_{i}\right]$
- intersection present if both segments in first i insertions
- so expected cost is $O\left(\left(i^{2} / n^{2}\right) k\right)$
- so cost contribution $\left(i / n^{2}\right) k$
- sum over i, get $O(k)$
- note: adding to RIC, assumption that first i items are random.
- Total: $O(n \log n+k)$

Search structure

Starting idea:

- extend all vertical lines infinitely
- divides space into slabs
- binary search to find place in slab
- binary search in slab feasible since lines in slab have total order
- $O(\log n)$ search time

Goal: apply binary search in slabs, without n^{2} space

- Idea: trapezoidal decom is "important" part of vertical lines
- problem: slab search no longer well defined
- but we show ok

The structure:

- A kind of search tree
- " x nodes" test against an altitude
- " y nodes" test against a segment
- leaves are trapezoids
- each node has two children
- But may have many parents

Inserting an edge contained in a trapezoid

- update trapezoids
- build a 4-node subtree to replace leaf

Inserting an edge that crosses trapezoids

- sequence of traps Δ_{i}
- Say Δ_{0} has left endpoint, replace leaf with x-node for left endpoint and y-node for new segment
- Same for last Δ
- middle Δ :
- each got a piece cut off
- cut off piece got merged to adjacent trapezoid
- Replace each leaf with a y node for new segment
- two children point to appropriate traps
- merged trap will have several parents - one from each premerge trap.

Search time analysis

- depth increases by one for new trapezoids
- RIC argument shows depth $O(\log n)$
- Fix search point q, build data structure
- Length of search path increased on insertion only if trapezoid containing q changes
- Odds of top or bottom edge vanishing (backwards analysis) are $1 / i$
- Left side vanishes iff unique segment defines that side and it vanishes
- So prob. $1 / i$
- Total $O(1 / i)$ for $i^{\text {th }}$ insert, so $O(\log n)$ overall.

Treaps

Dictionaries for ordered sets

- New Operations.
- enumerate in order
- successor-of, predecessor-of (even if not in set)
- join $(S, k, T), \operatorname{split}, \operatorname{paste}(S, T)$

Binary tree.

- child and parent pointers
- endogenous: leaf nodes empty.
- balanced if depth $O(\log n)$
- average case.
- worst case

Tree balancing

- rotations (show)
- implementing operations.
- red/black, AVL
- splay trees.
- drawbacks in geometry:
- auxiliary structure on nodes in subtree (eg, for remaining dimensions)
- rebuild on rotation

Returning to average case:

- Assign random "arrival orders" to keys
- Build tree as if arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities-follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth $d(x)$ analysis

- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
lemma: for x rank $k, E[d(x)]=H_{k}+H_{n-k+1}-1$
- $S^{-}=\{y \in S \mid y \leq x\}$
- $Q_{x}=$ ancestors of x
- Show $E\left[Q_{x}^{-}\right]=H_{k}$.
- to show: $y \in Q_{x}^{-}$iff inserted before all $z, y<z \leq x$.
- deduce: item j away has prob $1 / j$. Add.
- Suppose $y \in Q_{x}^{-}$.
- Then inserted before x
- Suppose some z between inserted before y
- Then y in left subtree of z, x in right, so not ancestor
- Thus, y before every z
- Suppose y first
- then x follows y on all comparisons (no z splits
- So ends up in subtree of y

Rotation analysis

- Insert/Delete time
- define spines
- equal left spine of right sub plus right spine of left sub
- proof: when rotate up, one spine increments, other stays fixed.
- R_{x} length of right spine of left subtree
- $E\left[R_{x}\right]=1-1 / k$ if rank k
- To show: $y \in R_{x}$ iff
- inserted after x
- but before all $z, y<z<x$
- sinceif z before y, then y goes left, so not on spine
- deduce: if r elts between, r ! of $(r+2)$! permutations work.
- So probability $1 /(r+1)(r+2)$.
- Expectation $\sum 1 /(1 \cdot 2)+1 /(2 \cdot 3)+\cdots=1-1 / k$
- subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.

