
Announcements

•	 No class monday.

• Metric embedding seminar.

Review

•	 expectation

•	 notion of high probability.

Markov.
•

Today: Book 4.1, 3.3, 4.2

Chebyshev.

•	 Remind variance, standard deviation. σ2 = E[(X − µX)
2]X

•	 E[XY] = E[X]E[Y] if independent

•	 variance of independent variables: sum of variances

•	 Pr[X − µ ≥ tσ] = Pr[(X − µ)2 ≥ t2σ2] ≤ 1/t2| |

•	 So chebyshev predicts won’t stray beyond stdev.

binomial distribution. variance np(1 − p). stdev
√

n.
•

•	 requires (only) a mean and variance. less applicable but more powerful
than markov

Balls in bins: err 1/ ln2 n.•

•	 Real applications later.

1

�

� �
�

�

�

Chernoff Bound

Intro

• Markov: Pr[f (X) > z] < E[f (X)]/z.

• Chebyshev used X2 in f

• other functions yield other bounds

• Chernoff most popular

Theorem:

• Let Xi poisson (ie independent 0/1) trials, E[Xi] = µ

µ
e

Pr[X > (1 + �)µ] < .
(1 + �)(1+�)

• note independent of n, exponential in µ.

Proof.

• For any t > 0,

Pr[X > (1 + �)µ] = Pr[exp(tX) > exp(t(1 + �)µ)]
E[exp(tX)]

<
exp(t(1 + �)µ)

• Use independence.

E[exp(tX)] = E[exp(tXi)]

E[exp(tXi)] = pie t + (1 − pi)

= 1 + pi(e t − 1)

exp(pi(e t − 1))≤

texp(pi(e
t − 1)) = exp(µ(e − 1))

So overall bound is
•
exp((et − 1)µ)
exp(t(1 + �)µ)

True for any t. To minimize, plug in t = ln(1 + �).

2

� �

•	 Simpler bounds:

–	 less than e−µ�2/3 for � < 1

–	 less than e−µ�2/4 for � < 2e − 1.

–	 Less than 2−(1+�)µ for larger �.

•	 By same argument on exp(−tX),

µ
e−�

Pr[X < (1 − �)µ] <
(1 − �)(1−�)

bound by e−�2/2 .

Basic application:

•	 cn log n balls in c bins.

•	 max matches average

a fortiori for n balss in n bins
•

General observations:

Bound trails off when � ≈ 1/
√

µ, ie absolute error
√

µ•

•	 no surprise, since standard deviation is around µ (recall chebyshev)

•	 If µ = Ω(log n), probability of constant � deviation is O(1/n), Useful if
polynomial number of events.

Note similarito to Gaussian distribution. •

• Generalizes: bound applies to any vars distributed in range [0, 1].

Zillions of Chernoff applications.

3

�

�

�

Median finding.

First main application of Chernoff: Random Sampling

List L•

•	 median of sample looks like median of whole. neighborhood.

•	 analysis via Chernoff bound

•	 Algorithm

–	 choose s samples with replacement

–	 take fences before and after sample median

–	 keep items between fences. sort.

•	 Analysis

–	 claim (i) median within fences and (ii) few items between fences.

–	 Without loss of generality, L contains 1, . . . , n. (ok for comparison
based algorithm)

–	 Samples s1, . . . , sm in sorted order.

–	 lemma: Sr near rn/s.

∗	 Expected number preceding k is ks/n.

∗	 Chernoff: w.h.p., ∀k, number elements before k is (1±�k)ks/n,

where �k = (6n ln n)/ks.

∗ Thus, when k > n/4, have �k ≤ � = 24 ln n/s)

∗	 Write � = 24 ln n/s.

∗	 S(1+�)ks/n > k

> rn/s(1 + �)
∗	 Sr

∗	 Sr < rn/s(1 − �).
s –	 Let r0 =
2 (1 − �)

n –	 Then w.h.p.,
2 (1 − �)/(1 + �) < Sr0 < n/2

s –	 Let r1 =
2 (1 − �)

–	 Then Sr1 > n/2

4

�

�

– But Sr1 − Sr0 = O(�n)

Number of elements to sort: s
•

• Set containing median: O(�n) = O(n (log n)/s).

• balance: O(log(n2/3)) in both steps.

Randomized is strictly better:

• Gives important constant factor improvement

• Optimum deterministic: ≥ (2 + �)n

• Optimum randomized: ≤ (3/2)n + o(n)

Book analysis slightly different.

Routing

Second main application of Chernoff: analysis of load balancing.

• Already saw balls in bins example

• synchronous message passing

• bidirectional links, one message per step

• queues on links

• permutation routing

• oblivious algorithms only consider self packet.

• Theorem Any deterministic oblivious permutation routing requires
Ω(N/d) steps on an N node degree d machine.

– reason: some edge has lots of paths through it.

– homework: special case

• Hypercube.

– N nodes, n = log2 N dimensions

5

�

�

– N n directed edges

– bit representation

– natural routing: bit fixing (left to right)

– paths of length n—lower bound on routing time

– N n edges for N length n paths suggest no congestion bound

– but deterministic bound Ω(N/n)

• Randomized routing algorithm:

– O(n) = O(log N) randomized

– how? load balance paths.

• First idea: random destination (not permutation!), bit correction

– Average case, but a good start.

– T (ei) = number of paths using ei

– by symmetry, all E[T (ei)] equal

– expected path length n/2

– LOE: expected total path length N n/2

– nN edges in hypercube

– Deduce E[T (ei)] = 1/2

– Chernoff: every edge gets ≤ 3n (prob 1 − 1/N)

• Naive usage:

– n phases, one per bit

– 3n time per phase

– O(n2) total

Worst case destinations •

– Idea [Valiant-Brebner] From intermediate destination, route back!

– routes any permutation in O(n2) expected time.

– what’s going in with N/n lower bound?

6

�

�

–	 Adversary doesn’t know our routing so cannot plan worst permu
tation

•	 What if don’t wait for next phase?

–	 FIFO queuing

–	 total time is length plus delay

–	 Expected delay ≤ E[T (el)] = n/2.

–	 Chernoff bound? no. dependence of T (ei).

•	 High prob. bound:

–	 consider paths sharing i’s fixed route (e0, . . . , ek)

–	 Suppose S packets intersect route (use at least one of er)

–	 claim delay ≤ S|	 |
–	 Suppose true, and let Hij = 1 if j hits i’s (fixed) route.

E[delay] E[Hij]≤ �
E[T (el)]≤

n/2≤

– Now Chernoff does apply (Hij independent for fixed i-route).

– S = O(n) w.p. 1 − 2−5n, so O(n) delay for all 2n paths.|	 |

•	 Lag argument

–	 Exercise: once packets separate, don’t rejoin

–	 Route for i is ρi = (e1, . . . , ek)

–	 charge each delay to a departure of a packet from ρi.

–	 Packet waiting to follow ej at time t has: Lag t− j

–	 Delay of i is lag crossing ek

–	 When i delay rises to l + 1, some packet from S has lag l (since
crosses ej instead of i).

–	 Consider last time t� where a lag-l packet exists on path

7

�

∗ some lag-l packet w crosses ej� at t� (others increase to lag-
(l + 1))

w leaves at this point (if not, then l at ej +1 next time)
∗

∗ charge one delay to w.

Summary:

• 2 key roles for chernoff

• sampling

• load balancing

• “high probability” results at log n means.

8

