Announcements

- No class monday.
- Metric embedding seminar.

Review

- expectation
- notion of high probability.
- Markov.

Today: Book 4.1, 3.3, 4.2

Chebyshev.

- Remind variance, standard deviation. $\sigma_X^2 = E[(X \mu_X)^2]$
- E[XY] = E[X]E[Y] if independent
- variance of independent variables: sum of variances
- $\Pr[|X \mu| \ge t\sigma] = \Pr[(X \mu)^2 \ge t^2\sigma^2] \le 1/t^2$
- So chebyshev predicts won't stray beyond stdev.
- binomial distribution. variance np(1-p). stdev \sqrt{n} .
- requires (only) a mean and variance. less applicable but more powerful than markov
- Balls in bins: err $1/\ln^2 n$.
- Real applications later.

Chernoff Bound

Intro

- Markov: $\Pr[f(X) > z] < E[f(X)]/z$.
- Chebyshev used X^2 in f
- other functions yield other bounds
- Chernoff most popular

Theorem:

• Let X_i poisson (ie independent 0/1) trials, $E[\sum X_i] = \mu$

$$\Pr[X > (1+\epsilon)\mu] < \left[\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right]^{\mu}.$$

• note independent of n, exponential in μ .

Proof.

• For any t > 0,

$$\Pr[X > (1+\epsilon)\mu] = \Pr[\exp(tX) > \exp(t(1+\epsilon)\mu)]$$

$$< \frac{E[\exp(tX)]}{\exp(t(1+\epsilon)\mu)}$$

• Use independence.

$$E[\exp(tX)] = \prod E[\exp(tX_i)]$$
$$E[\exp(tX_i)] = p_i e^t + (1 - p_i)$$
$$= 1 + p_i(e^t - 1)$$
$$\leq \exp(p_i(e^t - 1))$$

 $\prod \exp(p_i(e^t - 1)) = \exp(\mu(e^t - 1))$

• So overall bound is

$$\frac{\exp((e^t - 1)\mu)}{\exp(t(1 + \epsilon)\mu)}$$

True for any t. To minimize, plug in $t = \ln(1 + \epsilon)$.

- Simpler bounds:
 - less than $e^{-\mu\epsilon^2/3}$ for $\epsilon < 1$
 - less than $e^{-\mu\epsilon^2/4}$ for $\epsilon < 2e 1$.
 - Less than $2^{-(1+\epsilon)\mu}$ for larger ϵ .
- By same argument on $\exp(-tX)$,

$$\Pr[X < (1-\epsilon)\mu] < \left[\frac{e^{-\epsilon}}{(1-\epsilon)^{(1-\epsilon)}}\right]^{\mu}$$

bound by $e^{-\epsilon^2/2}$.

Basic application:

- $cn \log n$ balls in c bins.
- max matches average
- a fortiori for n balss in n bins

General observations:

- Bound trails off when $\epsilon \approx 1/\sqrt{\mu}$, ie absolute error $\sqrt{\mu}$
- no surprise, since standard deviation is around μ (recall chebyshev)
- If $\mu = \Omega(\log n)$, probability of constant ϵ deviation is O(1/n), Useful if polynomial number of events.
- Note similarito to Gaussian distribution.
- Generalizes: bound applies to any vars distributed in range [0, 1].

Zillions of Chernoff applications.

Median finding.

First main application of Chernoff: Random Sampling

- List L
- median of sample looks like median of whole. neighborhood.
- analysis via Chernoff bound
- Algorithm
 - choose s samples with replacement
 - take fences before and after sample median
 - keep items between fences. sort.
- Analysis
 - claim (i) median within fences and (ii) few items between fences.
 - Without loss of generality, L contains $1, \ldots, n$. (ok for comparison based algorithm)
 - Samples s_1, \ldots, s_m in sorted order.
 - lemma: S_r near rn/s.
 - * Expected number preceding k is ks/n.
 - * Chernoff: w.h.p., $\forall k$, number elements before k is $(1 \pm \epsilon_k)ks/n$, where $\epsilon_k = \sqrt{(6n \ln n)/ks}$.
 - * Thus, when k > n/4, have $\epsilon_k \le \epsilon = \sqrt{24 \ln n/s}$)
 - * Write $\epsilon = \sqrt{24 \ln n/s}$.
 - * $S_{(1+\epsilon)ks/n} > k$
 - * $S_r > rn/s(1+\epsilon)$
 - * $S_r < rn/s(1-\epsilon)$.
 - Let $r_0 = \frac{s}{2}(1 \epsilon)$
 - Then w.h.p., $\frac{n}{2}(1-\epsilon)/(1+\epsilon) < S_{r_0} < n/2$
 - Let $r_1 = \frac{s}{2}(1 \epsilon)$
 - Then $S_{r_1} > n/2$

- But $S_{r_1} - S_{r_0} = O(\epsilon n)$

- Number of elements to sort: s
- Set containing median: $O(\epsilon n) = O(n\sqrt{(\log n)/s}).$
- balance: $O(\log(n^{2/3}))$ in both steps.

Randomized is strictly better:

- Gives important constant factor improvement
- Optimum deterministic: $\geq (2 + \epsilon)n$
- Optimum randomized: $\leq (3/2)n + o(n)$

Book analysis slightly different.

Routing

Second main application of Chernoff: analysis of load balancing.

- Already saw balls in bins example
- synchronous message passing
- bidirectional links, one message per step
- queues on links
- **permutation** routing
- oblivious algorithms only consider self packet.
- **Theorem** Any deterministic oblivious permutation routing requires $\Omega(\sqrt{N/d})$ steps on an N node degree d machine.
 - reason: some edge has lots of paths through it.
 - homework: special case
- Hypercube.
 - N nodes, $n = \log_2 N$ dimensions

- Nn directed edges
- bit representation
- natural routing: bit fixing (left to right)
- paths of length *n*—lower bound on routing time
- Nn edges for N length n paths suggest no congestion bound
- but deterministic bound $\Omega(\sqrt{N/n})$
- Randomized routing algorithm:
 - $O(n) = O(\log N)$ randomized
 - how? load balance paths.
- First idea: random destination (not permutation!), bit correction
 - Average case, but a good start.
 - $T(e_i) =$ number of paths using e_i
 - by symmetry, all $E[T(e_i)]$ equal
 - expected path length n/2
 - LOE: expected total path length Nn/2
 - -nN edges in hypercube
 - Deduce $E[T(e_i)] = 1/2$
 - Chernoff: every edge gets $\leq 3n \pmod{1 1/N}$
- Naive usage:
 - -n phases, one per bit
 - -3n time per phase
 - $O(n^2)$ total
- Worst case destinations
 - Idea [Valiant-Brebner] From intermediate destination, route back!
 - routes **any** permutation in $O(n^2)$ expected time.
 - what's going in with $\sqrt{N/n}$ lower bound?

- Adversary doesn't know our routing so cannot plan worst permutation
- What if don't wait for next phase?
 - FIFO queuing
 - total time is length plus **delay**
 - Expected delay $\leq E[\sum T(e_l)] = n/2.$
 - Chernoff bound? no. dependence of $T(e_i)$.
- High prob. bound:
 - consider paths sharing *i*'s fixed route (e_0, \ldots, e_k)
 - Suppose S packets intersect route (use at least one of e_r)
 - claim delay $\leq |S|$
 - Suppose true, and let $H_{ij} = 1$ if j hits i's (fixed) route.

$$E[\text{delay}] \leq E[\sum H_{ij}]$$

$$\leq E[\sum T(e_l)]$$

$$\leq n/2$$

- Now Chernoff **does** apply $(H_{ij} \text{ independent for fixed } i\text{-route})$.
- -|S| = O(n) w.p. $1 2^{-5n}$, so O(n) delay for all 2^n paths.

• Lag argument

- Exercise: once packets separate, don't rejoin
- Route for *i* is $\rho_i = (e_1, \ldots, e_k)$
- charge each delay to a departure of a packet from ρ_i .
- Packet waiting to follow e_j at time t has: Lag t j
- Delay of i is lag crossing e_k
- When *i* delay rises to l + 1, some packet from *S* has lag *l* (since crosses e_j instead of *i*).
- Consider last time t' where a lag-l packet exists on path

- * some lag-l packet w crosses $e_{j'}$ at t' (others increase to lag-(l+1))
- * w leaves at this point (if not, then l at $e_{j^\prime+1}$ next time)
- * charge one delay to w.

Summary:

- 2 key roles for chernoff
- sampling
- load balancing
- "high probability" results at $\log n$ means.