
Announcements 

•	 No class monday. 

• Metric embedding seminar. 

Review 

•	 expectation 

•	 notion of high probability.


Markov.
• 

Today: Book 4.1, 3.3, 4.2 

Chebyshev. 

•	 Remind variance, standard deviation. σ2 = E[(X − µX )
2]X 

•	 E[XY ] = E[X]E[Y ] if independent 

•	 variance of independent variables: sum of variances 

•	 Pr[ X − µ ≥ tσ] = Pr[(X − µ)2 ≥ t2σ2] ≤ 1/t2| | 

•	 So chebyshev predicts won’t stray beyond stdev.


binomial distribution. variance np(1 − p). stdev 
√

n.
• 

•	 requires (only) a mean and variance. less applicable but more powerful 
than markov 

Balls in bins: err 1/ ln2 n.• 

•	 Real applications later. 
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Chernoff Bound 

Intro 

• Markov: Pr[f (X) > z] < E[f (X)]/z. 

• Chebyshev used X2 in f


• other functions yield other bounds


• Chernoff most popular 

Theorem: 

• Let Xi poisson (ie independent 0/1) trials, E[ Xi] = µ 

µ 
e

Pr[X > (1 + �)µ] < . 
(1 + �)(1+�) 

• note independent of n, exponential in µ. 

Proof. 

• For any t > 0, 

Pr[X > (1 + �)µ] = Pr[exp(tX) > exp(t(1 + �)µ)] 
E[exp(tX)]

< 
exp(t(1 + �)µ) 

• Use independence. 

E[exp(tX)] = E[exp(tXi)] 

E[exp(tXi)] = pie t + (1 − pi) 

= 1 + pi(e t − 1) 

exp(pi(e t − 1))≤ 

texp(pi(e
t − 1)) = exp(µ(e − 1))


So overall bound is
• 
exp((et − 1)µ) 
exp(t(1 + �)µ) 

True for any t. To minimize, plug in t = ln(1 + �). 
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•	 Simpler bounds: 

–	 less than e−µ�2/3 for � < 1 

–	 less than e−µ�2/4 for � < 2e − 1. 

–	 Less than 2−(1+�)µ for larger �. 

•	 By same argument on exp(−tX), 

µ 
e−� 

Pr[X < (1 − �)µ] < 
(1 − �)(1−�) 

bound by e−�2/2 . 

Basic application: 

•	 cn log n balls in c bins. 

•	 max matches average


a fortiori for n balss in n bins
• 

General observations: 

Bound trails off when � ≈ 1/
√

µ, ie absolute error 
√

µ• 

•	 no surprise, since standard deviation is around µ (recall chebyshev) 

•	 If µ = Ω(log n), probability of constant � deviation is O(1/n), Useful if 
polynomial number of events. 

Note similarito to Gaussian distribution. • 

• Generalizes: bound applies to any vars distributed in range [0, 1]. 

Zillions of Chernoff applications. 
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Median finding.


First main application of Chernoff: Random Sampling


List L• 

•	 median of sample looks like median of whole. neighborhood. 

•	 analysis via Chernoff bound 

•	 Algorithm 

–	 choose s samples with replacement 

–	 take fences before and after sample median 

–	 keep items between fences. sort. 

•	 Analysis 

–	 claim (i) median within fences and (ii) few items between fences. 

–	 Without loss of generality, L contains 1, . . . , n. (ok for comparison 
based algorithm) 

–	 Samples s1, . . . , sm in sorted order. 

–	 lemma: Sr near rn/s. 

∗	 Expected number preceding k is ks/n. 

∗	 Chernoff: w.h.p., ∀k, number elements before k is (1±�k )ks/n, 

where �k = (6n ln n)/ks. 

∗ Thus, when k > n/4, have �k ≤ � = 24 ln n/s) 

∗	 Write � = 24 ln n/s. 

∗	 S(1+�)ks/n > k


> rn/s(1 + �)
∗	 Sr 

∗	 Sr < rn/s(1 − �). 
s –	 Let r0 = 
2 (1 − �) 

n –	 Then w.h.p., 
2 (1 − �)/(1 + �) < Sr0 < n/2 

s –	 Let r1 = 
2 (1 − �) 

–	 Then Sr1 > n/2 
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– But Sr1 − Sr0 = O(�n)


Number of elements to sort: s
• 

• Set containing median: O(�n) = O(n (log n)/s). 

• balance: O(log(n2/3)) in both steps. 

Randomized is strictly better: 

• Gives important constant factor improvement 

• Optimum deterministic: ≥ (2 + �)n 

• Optimum randomized: ≤ (3/2)n + o(n) 

Book analysis slightly different. 

Routing 

Second main application of Chernoff: analysis of load balancing. 

• Already saw balls in bins example 

• synchronous message passing 

• bidirectional links, one message per step 

• queues on links 

• permutation routing


• oblivious algorithms only consider self packet.


• Theorem Any deterministic oblivious permutation routing requires 
Ω( N/d) steps on an N node degree d machine. 

– reason: some edge has lots of paths through it. 

– homework: special case 

• Hypercube. 

– N nodes, n = log2 N dimensions 
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– N n directed edges 

– bit representation 

– natural routing: bit fixing (left to right) 

– paths of length n—lower bound on routing time 

– N n edges for N length n paths suggest no congestion bound 

– but deterministic bound Ω( N/n) 

• Randomized routing algorithm: 

– O(n) = O(log N ) randomized 

– how? load balance paths. 

• First idea: random destination (not permutation!), bit correction 

– Average case, but a good start. 

– T (ei) = number of paths using ei 

– by symmetry, all E[T (ei)] equal 

– expected path length n/2 

– LOE: expected total path length N n/2 

– nN edges in hypercube 

– Deduce E[T (ei)] = 1/2 

– Chernoff: every edge gets ≤ 3n (prob 1 − 1/N ) 

• Naive usage: 

– n phases, one per bit 

– 3n time per phase 

– O(n2) total 

Worst case destinations • 

– Idea [Valiant-Brebner] From intermediate destination, route back! 

– routes any permutation in O(n2) expected time. 

– what’s going in with N/n lower bound? 
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–	 Adversary doesn’t know our routing so cannot plan worst permu
tation 

•	 What if don’t wait for next phase? 

–	 FIFO queuing 

–	 total time is length plus delay 

–	 Expected delay ≤ E[ T (el)] = n/2. 

–	 Chernoff bound? no. dependence of T (ei). 

•	 High prob. bound: 

–	 consider paths sharing i’s fixed route (e0, . . . , ek ) 

–	 Suppose S packets intersect route (use at least one of er ) 

–	 claim delay ≤ S|	 | 
–	 Suppose true, and let Hij = 1 if j hits i’s (fixed) route. 

E[delay] E[ Hij ]≤ � 
E[ T (el)]≤ 

n/2≤ 

– Now Chernoff does apply (Hij independent for fixed i-route). 

– S = O(n) w.p. 1 − 2−5n, so O(n) delay for all 2n paths.|	 | 

•	 Lag argument 

–	 Exercise: once packets separate, don’t rejoin 

–	 Route for i is ρi = (e1, . . . , ek ) 

–	 charge each delay to a departure of a packet from ρi. 

–	 Packet waiting to follow ej at time t has: Lag t− j 

–	 Delay of i is lag crossing ek 

–	 When i delay rises to l + 1, some packet from S has lag l (since 
crosses ej instead of i). 

–	 Consider last time t� where a lag-l packet exists on path 
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∗ some lag-l packet w crosses ej� at t� (others increase to lag-
(l + 1))


w leaves at this point (if not, then l at ej +1 next time)
∗ 

∗ charge one delay to w. 

Summary: 

• 2 key roles for chernoff 

• sampling 

• load balancing 

• “high probability” results at log n means. 
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