Announcements

- No class monday.
- Metric embedding seminar.

Review

- expectation
- notion of high probability.
- Markov.

Today: Book 4.1, 3.3, 4.2

Chebyshev.

- Remind variance, standard deviation. $\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]$
- $E[X Y]=E[X] E[Y]$ if independent
- variance of independent variables: sum of variances
- $\operatorname{Pr}[|X-\mu| \geq t \sigma]=\operatorname{Pr}\left[(X-\mu)^{2} \geq t^{2} \sigma^{2}\right] \leq 1 / t^{2}$
- So chebyshev predicts won't stray beyond stdev.
- binomial distribution. variance $n p(1-p)$. stdev \sqrt{n}.
- requires (only) a mean and variance. less applicable but more powerful than markov
- Balls in bins: err $1 / \ln ^{2} n$.
- Real applications later.

Chernoff Bound

Intro

- Markov: $\operatorname{Pr}[f(X)>z]<E[f(X)] / z$.
- Chebyshev used X^{2} in f
- other functions yield other bounds
- Chernoff most popular

Theorem:

- Let X_{i} poisson (ie independent 0/1) trials, $E\left[\sum X_{i}\right]=\mu$

$$
\operatorname{Pr}[X>(1+\epsilon) \mu]<\left[\frac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right]^{\mu}
$$

- note independent of n, exponential in μ.

Proof.

- For any $t>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\epsilon) \mu] & =\operatorname{Pr}[\exp (t X)>\exp (t(1+\epsilon) \mu)] \\
& <\frac{E[\exp (t X)]}{\exp (t(1+\epsilon) \mu)}
\end{aligned}
$$

- Use independence.

$$
\begin{aligned}
E[\exp (t X)] & =\prod E\left[\exp \left(t X_{i}\right)\right] \\
E\left[\exp \left(t X_{i}\right)\right] & =p_{i} e^{t}+\left(1-p_{i}\right) \\
& =1+p_{i}\left(e^{t}-1\right) \\
& \leq \exp \left(p_{i}\left(e^{t}-1\right)\right)
\end{aligned}
$$

$$
\Pi \exp \left(p_{i}\left(e^{t}-1\right)\right)=\exp \left(\mu\left(e^{t}-1\right)\right)
$$

- So overall bound is

$$
\frac{\exp \left(\left(e^{t}-1\right) \mu\right)}{\exp (t(1+\epsilon) \mu)}
$$

True for any t. To minimize, plug in $t=\ln (1+\epsilon)$.

- Simpler bounds:
- less than $e^{-\mu \epsilon^{2} / 3}$ for $\epsilon<1$
- less than $e^{-\mu \epsilon^{2} / 4}$ for $\epsilon<2 e-1$.
- Less than $2^{-(1+\epsilon) \mu}$ for larger ϵ.
- By same argument on $\exp (-t X)$,

$$
\operatorname{Pr}[X<(1-\epsilon) \mu]<\left[\frac{e^{-\epsilon}}{(1-\epsilon)^{(1-\epsilon)}}\right]^{\mu}
$$

bound by $e^{-\epsilon^{2} / 2}$.
Basic application:

- $c n \log n$ balls in c bins.
- max matches average
- a fortiori for n balss in n bins

General observations:

- Bound trails off when $\epsilon \approx 1 / \sqrt{\mu}$, ie absolute error $\sqrt{\mu}$
- no surprise, since standard deviation is around μ (recall chebyshev)
- If $\mu=\Omega(\log n)$, probability of constant ϵ deviation is $O(1 / n)$, Useful if polynomial number of events.
- Note similarito to Gaussian distribution.
- Generalizes: bound applies to any vars distributed in range $[0,1]$.

Zillions of Chernoff applications.

Median finding.

First main application of Chernoff: Random Sampling

- List L
- median of sample looks like median of whole. neighborhood.
- analysis via Chernoff bound
- Algorithm
- choose s samples with replacement
- take fences before and after sample median
- keep items between fences. sort.
- Analysis
- claim (i) median within fences and (ii) few items between fences.
- Without loss of generality, L contains $1, \ldots, n$. (ok for comparison based algorithm)
- Samples s_{1}, \ldots, s_{m} in sorted order.
- lemma: S_{r} near $r n / s$.
* Expected number preceding k is $k s / n$.
* Chernoff: w.h.p., $\forall k$, number elements before k is $\left(1 \pm \epsilon_{k}\right) k s / n$, where $\epsilon_{k}=\sqrt{(6 n \ln n) / k s}$.
* Thus, when $k>n / 4$, have $\left.\epsilon_{k} \leq \epsilon=\sqrt{24 \ln n / s}\right)$
* Write $\epsilon=\sqrt{24 \ln n / s}$.
* $S_{(1+\epsilon) k s / n}>k$
* $S_{r}>r n / s(1+\epsilon)$
* $S_{r}<r n / s(1-\epsilon)$.
- Let $r_{0}=\frac{s}{2}(1-\epsilon)$
- Then w.h.p., $\frac{n}{2}(1-\epsilon) /(1+\epsilon)<S_{r_{0}}<n / 2$
- Let $r_{1}=\frac{s}{2}(1-\epsilon)$
- Then $S_{r_{1}}>n / 2$
- But $S_{r_{1}}-S_{r_{0}}=O(\epsilon n)$
- Number of elements to sort: s
- Set containing median: $O(\epsilon n)=O(n \sqrt{(\log n) / s})$.
- balance: $O\left(\log \left(n^{2 / 3}\right)\right)$ in both steps.

Randomized is strictly better:

- Gives important constant factor improvement
- Optimum deterministic: $\geq(2+\epsilon) n$
- Optimum randomized: $\leq(3 / 2) n+o(n)$

Book analysis slightly different.

Routing

Second main application of Chernoff: analysis of load balancing.

- Already saw balls in bins example
- synchronous message passing
- bidirectional links, one message per step
- queues on links
- permutation routing
- oblivious algorithms only consider self packet.
- Theorem Any deterministic oblivious permutation routing requires $\Omega(\sqrt{N / d})$ steps on an N node degree d machine.
- reason: some edge has lots of paths through it.
- homework: special case
- Hypercube.
- N nodes, $n=\log _{2} N$ dimensions
- Nn directed edges
- bit representation
- natural routing: bit fixing (left to right)
- paths of length n-lower bound on routing time
- $N n$ edges for N length n paths suggest no congestion bound
- but deterministic bound $\Omega(\sqrt{N / n})$
- Randomized routing algorithm:
- $O(n)=O(\log N)$ randomized
- how? load balance paths.
- First idea: random destination (not permutation!), bit correction
- Average case, but a good start.
$-T\left(e_{i}\right)=$ number of paths using e_{i}
- by symmetry, all $E\left[T\left(e_{i}\right)\right]$ equal
- expected path length $n / 2$
- LOE: expected total path length $N n / 2$
- $n N$ edges in hypercube
- Deduce $E\left[T\left(e_{i}\right)\right]=1 / 2$
- Chernoff: every edge gets $\leq 3 n$ (prob $1-1 / N$)
- Naive usage:
- n phases, one per bit
- $3 n$ time per phase
- $O\left(n^{2}\right)$ total
- Worst case destinations
- Idea [Valiant-Brebner] From intermediate destination, route back!
- routes any permutation in $O\left(n^{2}\right)$ expected time.
- what's going in with $\sqrt{N / n}$ lower bound?
- Adversary doesn't know our routing so cannot plan worst permutation
- What if don't wait for next phase?
- FIFO queuing
- total time is length plus delay
- Expected delay $\leq E\left[\sum T\left(e_{l}\right)\right]=n / 2$.
- Chernoff bound? no. dependence of $T\left(e_{i}\right)$.
- High prob. bound:
- consider paths sharing i 's fixed route $\left(e_{0}, \ldots, e_{k}\right)$
- Suppose S packets intersect route (use at least one of e_{r})
- claim delay $\leq|S|$
- Suppose true, and let $H_{i j}=1$ if j hits i 's (fixed) route.

$$
\begin{aligned}
E[\text { delay }] & \leq E\left[\sum H_{i j}\right] \\
& \leq E\left[\sum T\left(e_{l}\right)\right] \\
& \leq n / 2
\end{aligned}
$$

- Now Chernoff does apply ($H_{i j}$ independent for fixed i-route).
$-|S|=O(n)$ w.p. $1-2^{-5 n}$, so $O(n)$ delay for all 2^{n} paths.
- Lag argument
- Exercise: once packets separate, don't rejoin
- Route for i is $\rho_{i}=\left(e_{1}, \ldots, e_{k}\right)$
- charge each delay to a departure of a packet from ρ_{i}.
- Packet waiting to follow e_{j} at time t has: $\mathbf{L a g} t-j$
- Delay of i is lag crossing e_{k}
- When i delay rises to $l+1$, some packet from S has lag l (since crosses e_{j} instead of i).
- Consider last time t^{\prime} where a lag-l packet exists on path
* some lag-l packet w crosses $e_{j^{\prime}}$ at t^{\prime} (others increase to lag$(l+1))$
* w leaves at this point (if not, then l at $e_{j^{\prime}+1}$ next time)
* charge one delay to w.

Summary:

- 2 key roles for chernoff
- sampling
- load balancing
- "high probability" results at $\log n$ means.

