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Routing 

Second main application of Chernoff: analysis of load balancing. 

• Already saw balls in bins example 

• synchronous message passing 

• bidirectional links, one message per step 

• queues on links 

• permutation routing


• oblivious algorithms only consider self packet.


• Theorem Any deterministic oblivious permutation routing requires 
Ω( N/d) steps on an N node degree d machine. 

– reason: some edge has lots of paths through it. 

– homework: special case 

• Hypercube. 

– N nodes, n = log2 N dimensions 

– Nn directed edges 

– bit representation 

– natural routing: bit fixing (left to right) 

– paths of length n—lower bound on routing time 

– Nn edges for N length n paths suggest no congestion bound 

– but deterministic bound Ω( N/n) 

• Randomized routing algorithm: 

– O(n) = O(log N) randomized 

– how? load balance paths. 

• First idea: random destination (not permutation!), bit correction 

– Average case, but a good start. 
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–	 T (ei) = number of paths using ei 

–	 by symmetry, all E[T (ei)] equal 

–	 expected path length n/2 

–	 LOE: expected total path length N n/2 

–	 nN edges in hypercube 

–	 Deduce E[T (ei)] = 1/2 

–	 Chernoff: every edge gets ≤ 3n (prob 1 − 1/N ) 

•	 Naive usage: 

–	 n phases, one per bit 

–	 3n time per phase 

–	 O(n2) total 

Worst case destinations • 

–	 Idea [Valiant-Brebner] From intermediate destination, route back! 

–	 routes any permutation in O(n2) expected time. 

–	 what’s going in with N/n lower bound? 

–	 Adversary doesn’t know our routing so cannot plan worst permu
tation 

•	 What if don’t wait for next phase? 

–	 FIFO queuing 

–	 total time is length plus delay 

–	 Expected delay ≤ E[ T (el)] = n/2. 

–	 Chernoff bound? no. dependence of T (ei). 

•	 High prob. bound: 

–	 consider paths sharing i’s fixed route (e0, . . . , ek ) 

–	 Suppose S packets intersect route (use at least one of er ) 

–	 claim delay ≤ S|	 | 
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– Suppose true, and let Hij = 1 if j hits i’s (fixed) route. 

E[delay] E[ Hij ]≤ � 
E[ T (el)]≤ 

n/2≤ 

– Now Chernoff does apply (Hij independent for fixed i-route). 

– S = O(n) w.p. 1 − 2−5n, so O(n) delay for all 2n paths.|	 | 

•	 Lag argument 

–	 Exercise: once packets separate, don’t rejoin 

–	 Route for i is ρi = (e1, . . . , ek ) 

–	 charge each delay to a departure of a packet from ρi. 

–	 Packet waiting to follow ej at time t has: Lag t− j 

–	 Delay of i is lag crossing ek 

–	 When i delay rises to l + 1, some packet from S has lag l (since 
crosses ej instead of i). 

–	 Consider last time t� where a lag-l packet exists on path 

∗	 some lag-l packet w crosses ej� at t� (others increase to lag-
(l + 1))


w leaves at this point (if not, then l at ej +1 next time)
∗ 

∗	 charge one delay to w. 

Summary: 

•	 2 key roles for chernoff 

•	 sampling 

•	 load balancing 

•	 “high probability” results at log n means. 
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The Probabilistic Method—Value of Random Answers 

Idea: to show an object with certain properties exists 

•	 generate a random object 

• prove it has properties with nonzero probability 

• often, “certain properties” means “good solution to our problem” 

Max-Cut: 

Define• 

•	 NP-complete 

•	 Approximation algorithms


factor 2
• 

•	 “expected performance,” so doesn’t really fit our RP/ZPP framework 

but does show such a cut exists• 

Set balancing. 

minimize max bias. •


4
√

n ln n.
• 

•	 Spencer—10 lectures on the probabilistic method 

Expanders 

Existence vs. constriction 

•	 Of course, many probabilistic method constructions yield constructive 
algorithms 

•	 In maxcut, just try till succeed 

•	 Other times, are only existential proofs, or very bad algorithms 

•	 But motivate search for good algorithm 

4 



�	 � 

�	 � 

�	 �� � 

Definition: (n, d, α, c) OR-concentrator 

•	 bipartite 2n vertices 

•	 degree at most d in L 

• expansion c on sets < αn. 

Applications: 

•	 switching/routing


ECCs
• 

claim: (n, 18, 1/3, 2)-concentrator 

•	 Construct by sampling d random neighbors with replacement 

–	 Es: Specific size s set has < cs neighbors. 

–	 fix S of size s. T of size < cs. 

–	 prob. S goes to T at most (cs/n)ds 

n – sets T 
cs 

n – sets S 
s 

– 
n n 

Pr[] ≤ 
s cs 

(cs/n)ds 

≤ (en/s)s(en/cs)cs(cs/n)ds 

c+1 s = [(s/n)d−c−1 e c d−c]
c+1 s≤ [(1/3)d−c−1 e c d−c]

s≤ [(c/3)d(3e)c+1]

–	 Take c = 2, d = 18, get [(2/3)18(3e)3]<2−s 

– sum over s, get < 1 

Existence proof 

•	 No known construction this good. 

•	 N P -hard to verify 

•	 but some constructions almost this good 

•	 recent progress via zig-zag product 
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Wiring 

Sometimes, it’s hard to get hands on a good probability distribution of ran
dom answers. 

Problem formulation • 

– 
√

n ×
√

n gate array 

– Manhattan wiring 

– boundaries between gates 

– fixed width boundary means limit on number of crossing wires 

– optimization vs. feasibility: minimize max crossing number 

– focus on single-bend wiring. two choices for route. 

– Generalizes if you know about max-flow 

• Linear Programs, integer linear programs 

– Black box 

– Good to know, since great solvers exist in practice 

– Solution techniques in other courses 

IP formulation • 

– xi0 means xi starts horizontal, xi1 vertical 

– Tb0 = {i net i through b if xi0}| 
– Tb1 

– IP 

min w 

xi0 + xi1 = 1 

xi0 + wxi1 ≤
i∈Tb0 i∈Tb1 

Solution ˆ xi1, value ˆ• xi0, ˆ w. 

• rounding is Poisson vars, mean ŵ. 
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•	 Pr[≥ (1 + δ) ̂ w/4w] ≤ e−δ2 ˆ

•	 need 2n boundaries, so aim for prob. bound 1/2n2 . 

•	 solve, δ = (4 ln 2n2)/ŵ. 

So absolute error 
√

8 ̂w ln n• 

–	 Good (o(1)-error) if ŵ � 8 ln n 

–	 Bad (O(ln n) error) is ŵ = 2 

–	 General rule: randomized rounding good if target logarithmic, not 
if constant 

MAX SAT 

Define. 

literals• 

clauses• 

• NP-complete 

random set 

•	 achieve 1 − 2−k 

• very nice for large k, but only 1/2 for k = 1 

LP 

max zj 

yi + (1 − y1) ≥ zj 

Analysis 

•	 βk = 1 − (1 − 1/k)k . values 1, 3/4, .704, . . . 

•	 Lemma: k-literal clause sat w/pr at least βkẑj. 

•	 proof: 
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– assume all positive literals. 

– prob 1 − (1 − yi)


–


– maximize when all yi = ẑj /k. 

– Show 1 − (1 − ẑ/k)k ≥ βkẑk. 

– check at z = 0, 1 

• Result: (1 − 1/e) approximation (convergence of (1 − 1/k)k ) 

• much better for small k: i.e. 1-approx for k = 1 

LP good for small clauses, random for large. 

• Better: try both methods. 

• n1, n2 number in both methods 

• Show (n1 + n2)/2 ≥ (3/4) ẑj 

Cj ∈Sk (1 − 2−k )ẑj• n1 ≥ 

βk ẑj• n2 ≥ 

• n1 + n2 ≥ (1 − 2−k + βk )ˆ
� 3 ˆzj ≥ 

2 zj 
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