Routing

Second main application of Chernoff: analysis of load balancing.

- Already saw balls in bins example
- synchronous message passing
- bidirectional links, one message per step
- queues on links
- permutation routing
- oblivious algorithms only consider self packet.
- **Theorem** Any deterministic oblivious permutation routing requires $\Omega(\sqrt{N/d})$ steps on an N node degree d machine.
 - reason: some edge has lots of paths through it.
 - homework: special case
- Hypercube.
 - N nodes, $n = \log_2 N$ dimensions
 - Nn directed edges
 - bit representation
 - natural routing: bit fixing (left to right)
 - paths of length $n\!-\!\mathrm{lower}$ bound on routing time
 - Nn edges for N length n paths suggest no congestion bound
 - but deterministic bound $\Omega(\sqrt{N/n})$
- Randomized routing algorithm:
 - $O(n) = O(\log N)$ randomized
 - how? load balance paths.
- First idea: random destination (not permutation!), bit correction
 - Average case, but a good start.

- $T(e_i) =$ number of paths using e_i
- by symmetry, all $E[T(e_i)]$ equal
- expected path length n/2
- LOE: expected total path length Nn/2
- nN edges in hypercube
- Deduce $E[T(e_i)] = 1/2$
- Chernoff: every edge gets $\leq 3n \pmod{1 1/N}$
- Naive usage:
 - -n phases, one per bit
 - -3n time per phase
 - $O(n^2)$ total
- Worst case destinations
 - Idea [Valiant-Brebner] From intermediate destination, route back!
 - routes **any** permutation in $O(n^2)$ expected time.
 - what's going in with $\sqrt{N/n}$ lower bound?
 - Adversary doesn't know our routing so cannot plan worst permutation
- What if don't wait for next phase?
 - FIFO queuing
 - total time is length plus **delay**
 - Expected delay $\leq E[\sum T(e_l)] = n/2.$
 - Chernoff bound? no. dependence of $T(e_i)$.
- High prob. bound:
 - consider paths sharing *i*'s fixed route (e_0, \ldots, e_k)
 - Suppose S packets intersect route (use at least one of e_r)
 - claim delay $\leq |S|$

– Suppose true, and let $H_{ij} = 1$ if j hits i's (fixed) route.

$$E[\text{delay}] \leq E[\sum H_{ij}]$$
$$\leq E[\sum T(e_l)]$$
$$\leq n/2$$

- Now Chernoff **does** apply $(H_{ij} \text{ independent for fixed } i\text{-route})$.
- -|S| = O(n) w.p. $1 2^{-5n}$, so O(n) delay for all 2^n paths.

• Lag argument

- Exercise: once packets separate, don't rejoin
- Route for *i* is $\rho_i = (e_1, \ldots, e_k)$
- charge each delay to a departure of a packet from ρ_i .
- Packet waiting to follow e_j at time t has: Lag t j
- Delay of i is lag crossing e_k
- When *i* delay rises to l + 1, some packet from *S* has lag *l* (since crosses e_j instead of *i*).
- Consider last time t' where a lag-l packet exists on path
 - * some lag-*l* packet *w* crosses $e_{j'}$ at *t'* (others increase to lag-(l+1))
 - * w leaves at this point (if not, then l at $e_{j'+1}$ next time)
 - * charge one delay to w.

Summary:

- 2 key roles for chernoff
- sampling
- load balancing
- "high probability" results at $\log n$ means.

The Probabilistic Method—Value of Random Answers

Idea: to show an object with certain properties exists

- generate a random object
- prove it has properties with nonzero probability
- often, "certain properties" means "good solution to our problem"

Max-Cut:

- Define
- NP-complete
- Approximation algorithms
- $\bullet~{\rm factor}~2$
- "expected performance," so doesn't really fit our RP/ZPP framework
- but does show such a cut **exists**

Set balancing.

- minimize max bias.
- $4\sqrt{n\ln n}$.
- Spencer—10 lectures on the probabilistic method

Expanders

Existence vs. constriction

- Of course, many probabilistic method constructions yield constructive algorithms
- In maxcut, just try till succeed
- Other times, are only existential proofs, or very bad algorithms
- But motivate search for good algorithm

Definition: (n, d, α, c) OR-concentrator

- bipartite 2n vertices
- degree at most d in L
- expansion c on sets $< \alpha n$.

Applications:

- switching/routing
- ECCs

claim: (n, 18, 1/3, 2)-concentrator

• Construct by sampling d random neighbors with replacement

$$- E_s$$
: Specific size s set has $< cs$ neighbors.

$$-$$
 fix S of size s. T of size $< cs$.

– prob. S goes to T at most $(cs/n)^{ds}$

$$-\binom{n}{cs}$$
 sets T

$$-\binom{n}{s}$$
 sets S

$$\Pr[] \leq \binom{n}{s} \binom{n}{cs} (cs/n)^{ds}$$
$$\leq (en/s)^s (en/cs)^{cs} (cs/n)^{ds}$$
$$= [(s/n)^{d-c-1} e^{c+1} c^{d-c}]^s$$
$$\leq [(1/3)^{d-c-1} e^{c+1} c^{d-c}]^s$$
$$\leq [(c/3)^d (3e)^{c+1}]^s$$

– Take $c = 2, d = 18, \text{ get } [(2/3)^{18}(3e)^3]^{<}2^{-s}$

$$-$$
 sum over s , get < 1

Existence proof

- No known construction this good.
- NP-hard to verify
- but some constructions almost this good
- recent progress via zig-zag product

Wiring

Sometimes, it's hard to get hands on a good probability distribution of random answers.

- Problem formulation
 - $-\sqrt{n} \times \sqrt{n}$ gate array
 - Manhattan wiring
 - boundaries between gates
 - fixed width boundary means limit on number of crossing wires
 - optimization vs. feasibility: minimize max crossing number
 - focus on single-bend wiring. two choices for route.
 - Generalizes if you know about max-flow
- Linear Programs, integer linear programs
 - Black box
 - Good to know, since great solvers exist in practice
 - Solution techniques in other courses
- IP formulation
 - $-x_{i0}$ means x_i starts horizontal, x_{i1} vertical
 - $T_{b0} = \{i \mid \text{net } i \text{ through } b \text{ if } x_{i0}\}$
 - $-T_{b1}$
 - IP

$$\min \qquad w$$
$$x_{i0} + x_{i1} = 1$$
$$\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \leq w$$

- Solution \hat{x}_{i0} , \hat{x}_{i1} , value \hat{w} .
- rounding is Poisson vars, mean \hat{w} .

- $\Pr[\geq (1+\delta)\hat{w}] \leq e^{-\delta^2 \hat{w}/4}$
- need 2n boundaries, so aim for prob. bound $1/2n^2$.
- solve, $\delta = \sqrt{(4 \ln 2n^2)/\hat{w}}$.
- So absolute error $\sqrt{8\hat{w}\ln n}$
 - Good (o(1)-error) if $\hat{w} \gg 8 \ln n$
 - Bad $(O(\ln n) \text{ error})$ is $\hat{w} = 2$
 - General rule: randomized rounding good if target logarithmic, not if constant

MAX SAT

Define.

- literals
- clauses
- NP-complete

random set

- achieve $1 2^{-k}$
- very nice for large k, but only 1/2 for k = 1

LP

$$\max \sum_{i \in C_j^+} y_i + \sum_{i \in C_j^-} (1 - y_1) \ge z_j$$

Analysis

- $\beta_k = 1 (1 1/k)^k$. values 1, 3/4, .704, ...
- Lemma: k-literal clause sat w/pr at least $\beta_k \hat{z}_j$.
- proof:

- assume all positive literals.
- prob $1 \prod (1 y_i)$
- —
- maximize when all $y_i = \hat{z}_j/k$.
- Show $1 (1 \hat{z}/k)^k \ge \beta_k \hat{z}_k$.
- check at z = 0, 1
- Result: (1 1/e) approximation (convergence of $(1 1/k)^k$)
- much better for small k: i.e. 1-approx for k = 1

LP good for small clauses, random for large.

- Better: try both methods.
- n_1, n_2 number in both methods
- Show $(n_1 + n_2)/2 \ge (3/4) \sum \hat{z}_j$
- $n_1 \ge \sum_{C_j \in S^k} (1 2^{-k}) \hat{z}_j$
- $n_2 \ge \sum \beta_k \hat{z}_j$
- $n_1 + n_2 \ge \sum (1 2^{-k} + \beta_k) \hat{z}_j \ge \sum \frac{3}{2} \hat{z}_j$