Routing

Second main application of Chernoff: analysis of load balancing.

- Already saw balls in bins example
- synchronous message passing
- bidirectional links, one message per step
- queues on links
- permutation routing
- oblivious algorithms only consider self packet.
- Theorem Any deterministic oblivious permutation routing requires $\Omega(\sqrt{N / d})$ steps on an N node degree d machine.
- reason: some edge has lots of paths through it.
- homework: special case
- Hypercube.
- N nodes, $n=\log _{2} N$ dimensions
- $N n$ directed edges
- bit representation
- natural routing: bit fixing (left to right)
- paths of length n-lower bound on routing time
- $N n$ edges for N length n paths suggest no congestion bound
- but deterministic bound $\Omega(\sqrt{N / n})$
- Randomized routing algorithm:
- $O(n)=O(\log N)$ randomized
- how? load balance paths.
- First idea: random destination (not permutation!), bit correction
- Average case, but a good start.
$-T\left(e_{i}\right)=$ number of paths using e_{i}
- by symmetry, all $E\left[T\left(e_{i}\right)\right]$ equal
- expected path length $n / 2$
- LOE: expected total path length $N n / 2$
- $n N$ edges in hypercube
- Deduce $E\left[T\left(e_{i}\right)\right]=1 / 2$
- Chernoff: every edge gets $\leq 3 n$ (prob $1-1 / N$)
- Naive usage:
- n phases, one per bit
- $3 n$ time per phase
- $O\left(n^{2}\right)$ total
- Worst case destinations
- Idea [Valiant-Brebner] From intermediate destination, route back!
- routes any permutation in $O\left(n^{2}\right)$ expected time.
- what's going in with $\sqrt{N / n}$ lower bound?
- Adversary doesn't know our routing so cannot plan worst permutation
- What if don't wait for next phase?
- FIFO queuing
- total time is length plus delay
- Expected delay $\leq E\left[\sum T\left(e_{l}\right)\right]=n / 2$.
- Chernoff bound? no. dependence of $T\left(e_{i}\right)$.
- High prob. bound:
- consider paths sharing i 's fixed route $\left(e_{0}, \ldots, e_{k}\right)$
- Suppose S packets intersect route (use at least one of e_{r})
- claim delay $\leq|S|$
- Suppose true, and let $H_{i j}=1$ if j hits i 's (fixed) route.

$$
\begin{aligned}
E[\text { delay }] & \leq E\left[\sum H_{i j}\right] \\
& \leq E\left[\sum T\left(e_{l}\right)\right] \\
& \leq n / 2
\end{aligned}
$$

- Now Chernoff does apply ($H_{i j}$ independent for fixed i-route).
- $|S|=O(n)$ w.p. $1-2^{-5 n}$, so $O(n)$ delay for all 2^{n} paths.
- Lag argument
- Exercise: once packets separate, don't rejoin
- Route for i is $\rho_{i}=\left(e_{1}, \ldots, e_{k}\right)$
- charge each delay to a departure of a packet from ρ_{i}.
- Packet waiting to follow e_{j} at time t has: $\mathbf{L a g} t-j$
- Delay of i is lag crossing e_{k}
- When i delay rises to $l+1$, some packet from S has lag l (since crosses e_{j} instead of i).
- Consider last time t^{\prime} where a lag-l packet exists on path * some lag-l packet w crosses $e_{j^{\prime}}$ at t^{\prime} (others increase to lag$(l+1))$
* w leaves at this point (if not, then l at $e_{j^{\prime}+1}$ next time)
* charge one delay to w.

Summary:

- 2 key roles for chernoff
- sampling
- load balancing
- "high probability" results at $\log n$ means.

The Probabilistic Method-Value of Random Answers

Idea: to show an object with certain properties exists

- generate a random object
- prove it has properties with nonzero probability
- often, "certain properties" means "good solution to our problem"

Max-Cut:

- Define
- NP-complete
- Approximation algorithms
- factor 2
- "expected performance," so doesn't really fit our RP/ZPP framework
- but does show such a cut exists

Set balancing.

- minimize max bias.
- $4 \sqrt{n \ln n}$.
- Spencer-10 lectures on the probabilistic method

Expanders

Existence vs. constriction

- Of course, many probabilistic method constructions yield constructive algorithms
- In maxcut, just try till succeed
- Other times, are only existential proofs, or very bad algorithms
- But motivate search for good algorithm

Definition: (n, d, α, c) OR-concentrator

- bipartite $2 n$ vertices
- degree at most d in L
- expansion c on sets $<\alpha n$.

Applications:

- switching/routing
- ECCs
claim: $(n, 18,1 / 3,2)$-concentrator
- Construct by sampling d random neighbors with replacement
- E_{s} : Specific size s set has $<c s$ neighbors.
- fix S of size s. T of size $<c s$.
- prob. S goes to T at most $(c s / n)^{d s}$
- $\binom{n}{c s}$ sets T
- $\binom{n}{s}$ sets S

$$
\begin{aligned}
\operatorname{Pr}[] & \leq\binom{ n}{s}\binom{n}{c s}(c s / n)^{d s} \\
& \leq(e n / s)^{s}(e n / c s)^{c s}(c s / n)^{d s} \\
& =\left[(s / n)^{d-c-1} e^{c+1} c^{d-c} c^{s}\right. \\
& \leq\left[(1 / 3)^{d-c-1} e^{c+1} c^{d-c}\right]^{s} \\
& \leq\left[(c / 3)^{d}(3 e)^{c+1}\right]^{s}
\end{aligned}
$$

- Take $c=2, d=18$, get $\left[(2 / 3)^{18}(3 e)^{3}\right]^{<} 2^{-s}$
- sum over s, get <1

Existence proof

- No known construction this good.
- NP-hard to verify
- but some constructions almost this good
- recent progress via zig-zag product

Wiring

Sometimes, it's hard to get hands on a good probability distribution of random answers.

- Problem formulation
$-\sqrt{n} \times \sqrt{n}$ gate array
- Manhattan wiring
- boundaries between gates
- fixed width boundary means limit on number of crossing wires
- optimization vs. feasibility: minimize max crossing number
- focus on single-bend wiring. two choices for route.
- Generalizes if you know about max-flow
- Linear Programs, integer linear programs
- Black box
- Good to know, since great solvers exist in practice
- Solution techniques in other courses
- IP formulation
- $x_{i 0}$ means x_{i} starts horizontal, $x_{i 1}$ vertical
$-T_{b 0}=\left\{i \mid\right.$ net i through b if $\left.x_{i 0}\right\}$
$-T_{b 1}$
- IP

$$
\begin{aligned}
\min & w \\
x_{i 0}+x_{i 1} & =1 \\
\sum_{i \in T_{b 0}} x_{i 0}+\sum_{i \in T_{b 1}} x_{i 1} & \leq w
\end{aligned}
$$

- Solution $\hat{x}_{i 0}, \hat{x}_{i 1}$, value \hat{w}.
- rounding is Poisson vars, mean \hat{w}.
- $\operatorname{Pr}[\geq(1+\delta) \hat{w}] \leq e^{-\delta^{2} \hat{w} / 4}$
- need $2 n$ boundaries, so aim for prob. bound $1 / 2 n^{2}$.
- solve, $\delta=\sqrt{\left(4 \ln 2 n^{2}\right) / \hat{w}}$.
- So absolute error $\sqrt{8 \hat{w} \ln n}$
$-\operatorname{Good}(o(1)$-error) if $\hat{w} \gg 8 \ln n$
$-\operatorname{Bad}(O(\ln n)$ error $)$ is $\hat{w}=2$
- General rule: randomized rounding good if target logarithmic, not if constant

MAX SAT

Define.

- literals
- clauses
- NP-complete
random set
- achieve $1-2^{-k}$
- very nice for large k, but only $1 / 2$ for $k=1$

LP

$$
\sum_{i \in C_{j}^{+}} y_{i}+\sum_{i \in C_{j}^{-}}\left(1-y_{1}\right) \geq z_{j} \quad \sum z_{j}
$$

Analysis

- $\beta_{k}=1-(1-1 / k)^{k}$. values $1,3 / 4, .704, \ldots$
- Lemma: k-literal clause sat w / pr at least $\beta_{k} \hat{z}_{j}$.
- proof:
- assume all positive literals.
$-\operatorname{prob} 1-\Pi\left(1-y_{i}\right)$
- maximize when all $y_{i}=\hat{z}_{j} / k$.
- Show $1-(1-\hat{z} / k)^{k} \geq \beta_{k} \hat{z}_{k}$.
- check at $z=0,1$
- Result: $(1-1 / e)$ approximation (convergence of $\left.(1-1 / k)^{k}\right)$
- much better for small k : i.e. 1-approx for $k=1$

LP good for small clauses, random for large.

- Better: try both methods.
- n_{1}, n_{2} number in both methods
- Show $\left(n_{1}+n_{2}\right) / 2 \geq(3 / 4) \sum \hat{z}_{j}$
- $n_{1} \geq \sum_{C_{j} \in S^{k}}\left(1-2^{-k}\right) \hat{z}_{j}$
- $n_{2} \geq \sum \beta_{k} \hat{z}_{j}$
- $n_{1}+n_{2} \geq \sum\left(1-2^{-k}+\beta_{k}\right) \hat{z}_{j} \geq \sum \frac{3}{2} \hat{z}_{j}$

