
�

�

Routing

Second main application of Chernoff: analysis of load balancing.

• Already saw balls in bins example

• synchronous message passing

• bidirectional links, one message per step

• queues on links

• permutation routing

• oblivious algorithms only consider self packet.

• Theorem Any deterministic oblivious permutation routing requires
Ω(N/d) steps on an N node degree d machine.

– reason: some edge has lots of paths through it.

– homework: special case

• Hypercube.

– N nodes, n = log2 N dimensions

– Nn directed edges

– bit representation

– natural routing: bit fixing (left to right)

– paths of length n—lower bound on routing time

– Nn edges for N length n paths suggest no congestion bound

– but deterministic bound Ω(N/n)

• Randomized routing algorithm:

– O(n) = O(log N) randomized

– how? load balance paths.

• First idea: random destination (not permutation!), bit correction

– Average case, but a good start.

1

�

�

–	 T (ei) = number of paths using ei

–	 by symmetry, all E[T (ei)] equal

–	 expected path length n/2

–	 LOE: expected total path length N n/2

–	 nN edges in hypercube

–	 Deduce E[T (ei)] = 1/2

–	 Chernoff: every edge gets ≤ 3n (prob 1 − 1/N)

•	 Naive usage:

–	 n phases, one per bit

–	 3n time per phase

–	 O(n2) total

Worst case destinations •

–	 Idea [Valiant-Brebner] From intermediate destination, route back!

–	 routes any permutation in O(n2) expected time.

–	 what’s going in with N/n lower bound?

–	 Adversary doesn’t know our routing so cannot plan worst permu
tation

•	 What if don’t wait for next phase?

–	 FIFO queuing

–	 total time is length plus delay

–	 Expected delay ≤ E[T (el)] = n/2.

–	 Chernoff bound? no. dependence of T (ei).

•	 High prob. bound:

–	 consider paths sharing i’s fixed route (e0, . . . , ek)

–	 Suppose S packets intersect route (use at least one of er)

–	 claim delay ≤ S|	 |

2

�

�

– Suppose true, and let Hij = 1 if j hits i’s (fixed) route.

E[delay] E[Hij]≤ �
E[T (el)]≤

n/2≤

– Now Chernoff does apply (Hij independent for fixed i-route).

– S = O(n) w.p. 1 − 2−5n, so O(n) delay for all 2n paths.|	 |

•	 Lag argument

–	 Exercise: once packets separate, don’t rejoin

–	 Route for i is ρi = (e1, . . . , ek)

–	 charge each delay to a departure of a packet from ρi.

–	 Packet waiting to follow ej at time t has: Lag t− j

–	 Delay of i is lag crossing ek

–	 When i delay rises to l + 1, some packet from S has lag l (since
crosses ej instead of i).

–	 Consider last time t� where a lag-l packet exists on path

∗	 some lag-l packet w crosses ej� at t� (others increase to lag-
(l + 1))

w leaves at this point (if not, then l at ej +1 next time)
∗

∗	 charge one delay to w.

Summary:

•	 2 key roles for chernoff

•	 sampling

•	 load balancing

•	 “high probability” results at log n means.

3

The Probabilistic Method—Value of Random Answers

Idea: to show an object with certain properties exists

•	 generate a random object

• prove it has properties with nonzero probability

• often, “certain properties” means “good solution to our problem”

Max-Cut:

Define•

•	 NP-complete

•	 Approximation algorithms

factor 2
•

•	 “expected performance,” so doesn’t really fit our RP/ZPP framework

but does show such a cut exists•

Set balancing.

minimize max bias. •

4
√

n ln n.
•

•	 Spencer—10 lectures on the probabilistic method

Expanders

Existence vs. constriction

•	 Of course, many probabilistic method constructions yield constructive
algorithms

•	 In maxcut, just try till succeed

•	 Other times, are only existential proofs, or very bad algorithms

•	 But motivate search for good algorithm

4

�	 �

�	 �

�	 �� �

Definition: (n, d, α, c) OR-concentrator

•	 bipartite 2n vertices

•	 degree at most d in L

• expansion c on sets < αn.

Applications:

•	 switching/routing

ECCs
•

claim: (n, 18, 1/3, 2)-concentrator

•	 Construct by sampling d random neighbors with replacement

–	 Es: Specific size s set has < cs neighbors.

–	 fix S of size s. T of size < cs.

–	 prob. S goes to T at most (cs/n)ds

n – sets T
cs

n – sets S
s

–
n n

Pr[] ≤
s cs

(cs/n)ds

≤ (en/s)s(en/cs)cs(cs/n)ds

c+1 s = [(s/n)d−c−1 e c d−c]
c+1 s≤ [(1/3)d−c−1 e c d−c]

s≤ [(c/3)d(3e)c+1]

–	 Take c = 2, d = 18, get [(2/3)18(3e)3]<2−s

– sum over s, get < 1

Existence proof

•	 No known construction this good.

•	 N P -hard to verify

•	 but some constructions almost this good

•	 recent progress via zig-zag product

5

� �

Wiring

Sometimes, it’s hard to get hands on a good probability distribution of ran
dom answers.

Problem formulation •

–
√

n ×
√

n gate array

– Manhattan wiring

– boundaries between gates

– fixed width boundary means limit on number of crossing wires

– optimization vs. feasibility: minimize max crossing number

– focus on single-bend wiring. two choices for route.

– Generalizes if you know about max-flow

• Linear Programs, integer linear programs

– Black box

– Good to know, since great solvers exist in practice

– Solution techniques in other courses

IP formulation •

– xi0 means xi starts horizontal, xi1 vertical

– Tb0 = {i net i through b if xi0}|
– Tb1

– IP

min w

xi0 + xi1 = 1

xi0 + wxi1 ≤
i∈Tb0 i∈Tb1

Solution ˆ xi1, value ˆ• xi0, ˆ w.

• rounding is Poisson vars, mean ŵ.

6

�

�

� �

•	 Pr[≥ (1 + δ) ̂ w/4w] ≤ e−δ2 ˆ

•	 need 2n boundaries, so aim for prob. bound 1/2n2 .

•	 solve, δ = (4 ln 2n2)/ŵ.

So absolute error
√

8 ̂w ln n•

–	 Good (o(1)-error) if ŵ � 8 ln n

–	 Bad (O(ln n) error) is ŵ = 2

–	 General rule: randomized rounding good if target logarithmic, not
if constant

MAX SAT

Define.

literals•

clauses•

• NP-complete

random set

•	 achieve 1 − 2−k

• very nice for large k, but only 1/2 for k = 1

LP

max zj

yi + (1 − y1) ≥ zj

Analysis

•	 βk = 1 − (1 − 1/k)k . values 1, 3/4, .704, . . .

•	 Lemma: k-literal clause sat w/pr at least βkẑj.

•	 proof:

7

−i C∈ j
+i C∈ j

�

�

�

�

�

– assume all positive literals.

– prob 1 − (1 − yi)

–

– maximize when all yi = ẑj /k.

– Show 1 − (1 − ẑ/k)k ≥ βkẑk.

– check at z = 0, 1

• Result: (1 − 1/e) approximation (convergence of (1 − 1/k)k)

• much better for small k: i.e. 1-approx for k = 1

LP good for small clauses, random for large.

• Better: try both methods.

• n1, n2 number in both methods

• Show (n1 + n2)/2 ≥ (3/4) ẑj

Cj ∈Sk (1 − 2−k)ẑj• n1 ≥

βk ẑj• n2 ≥

• n1 + n2 ≥ (1 − 2−k + βk)ˆ
� 3 ˆzj ≥

2 zj

8

