The Probabilistic Method

Idea: to show an object with certain properties exists

- generate a random object
- prove it has properties with nonzero probability
- often, "certain properties" means "good solution to our problem"

Last time

- set balancing
- expanders

The Probabilistic Method for Expectations

Outline

- goal to show exists object of given "value"
- give distribution with greater "expected value"
- deduce goal

Max-Cut:

- Define
- NP-complete
- Approximation algorithms
- factor 2
- "expected performance," so doesn't really fit our RP/ZPP framework

Wiring

Sometimes, it's hard to get hands on a good probability distribution of random answers.

- Problem formulation
$-\sqrt{n} \times \sqrt{n}$ gate array
- Manhattan wiring
- boundaries between gates
- fixed width boundary means limit on number of crossing wires
- optimization vs. feasibility: minimize max crossing number
- focus on single-bend wiring. two choices for route.
- Generalizes if you know about multicommodity max-flow
- Linear Programs, integer linear programs
- Black box
- Good to know, since great solvers exist in practice
- Solution techniques in other courses
- LP is polytime, ILP is NP-hard
- LP gives hints-rounding.
- IP formulation
- $x_{i 0}$ means x_{i} starts horizontal, $x_{i 1}$ vertical
$-T_{b 0}=\left\{i \mid\right.$ net i through b if $\left.x_{i 0}\right\}$
- $T_{b 1}$
- IP

$$
\begin{aligned}
\min & w \\
x_{i 0}+x_{i 1} & =1 \\
\sum_{i \in T_{b 0}} x_{i 0}+\sum_{i \in T_{b 1}} x_{i 1} & \leq w
\end{aligned}
$$

- Solution $\hat{x}_{i 0}, \hat{x}_{i 1}$, value \hat{w}.
- rounding is Poisson vars, mean \hat{w}.
- For $\delta<1$ (good approx) $\operatorname{Pr}[\geq(1+\delta) \hat{w}] \leq e^{-\delta^{2} \hat{w} / 4}$
- need $2 n$ boundaries, so aim for prob. bound $1 / 2 n^{2}$.
- solve, $\delta=\sqrt{\left(4 \ln 2 n^{2}\right) / \hat{w}}$.
- So absolute error $\sqrt{8 \hat{w} \ln n}$
- Good (o(1)-error) if $\hat{w} \gg 8 \ln n$
- Bad $(O(\ln n)$ error $)$ if $\hat{w}=2$ (invoke other chernoff bound)
- General rule: randomized rounding good if target logarithmic, not if constant

MAX SAT

Define.

- literals
- clauses
- NP-complete
random set
- achieve $1-2^{-k}$
- very nice for large k, but only $1 / 2$ for $k=1$

LP

$$
\begin{aligned}
& \max \sum z_{j} \\
& \sum_{i \in C_{j}^{+}} y_{i}+\sum_{i \in C_{j}^{-}}\left(1-y_{1}\right) \geq z_{j}
\end{aligned}
$$

Analysis

- $\beta_{k}=1-(1-1 / k)^{k}$. values $1,3 / 4, .704, \ldots$
- Random round y_{i}
- Lemma: k-literal clause sat w / pr at least $\beta_{k} \hat{z}_{j}$.
- proof:
- assume all positive literals.
- prob $1-\Pi\left(1-y_{i}\right)$
- maximize when all $y_{i}=\hat{z}_{j} / k$.
- Show $1-(1-z / k)^{k} \geq \beta_{k} z$.
- concave, so check equality at $z=0,1$
- Result: $(1-1 / e)$ approximation (convergence of $\left.(1-1 / k)^{k}\right)$
- much better for small k : i.e. 1-approx for $k=1$

LP good for small clauses, random for large.

- Better: try both methods.
- n_{1}, n_{2} number in both methods
- Show $\left(n_{1}+n_{2}\right) / 2 \geq(3 / 4) \sum \hat{z}_{j}$
- $n_{1} \geq \sum_{C_{j} \in S^{k}}\left(1-2^{-k}\right) \hat{z}_{j}$
- $n_{2} \geq \sum \beta_{k} \hat{z}_{j}$
- $n_{1}+n_{2} \geq \sum\left(1-2^{-k}+\beta_{k}\right) \hat{z}_{j} \geq \sum \frac{3}{2} \hat{z}_{j}$

Method of Conditional Probabilities and Expectations

Derandomization.

- Theory: is $\mathrm{P}=\mathrm{RP}$?
- practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

- Imagine placing one vertex at a time.
- $x_{i}=0$ or 1 for left or right side
- $E[C]=(1 / 2) E\left[C \mid x_{1}=0\right]+(1 / 2) E\left[C \mid x_{1}=1\right]$
- Thus, either $E\left[C \mid x_{1}=0\right]$ or $E\left[C \mid X_{1}=1\right] \geq E[C]$
- Pick that one, continue
- More general, whole tree of element settings.
- Let $C(a)=E[C \mid a]$.
- For node a with children b, c, either $C(b)$ or $C(c) \geq C(a)$.
- By induction, get to leaf with expected value at least $E[C]$
- But no randomness left, so that is actual cut value.
- Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

- Review set-balancing Chernoff bound
- Think of setting item at a time
- Let Q be bad event (unbalanced set)
- We know $\operatorname{Pr}[Q]<1 / n$.
- $\operatorname{Pr}[Q]=1 / 2 \operatorname{Pr}\left[Q \mid x_{i 0}\right]+1 / 2 \operatorname{Pr}\left[Q \mid x_{i 1}\right]$
- Follows that one of conditional probs. less than $\operatorname{Pr}[Q]<1 / n$.
- More general, whole tree of element settings.
- Let $P(a)=\operatorname{Pr}[Q \mid a]$.
- For node a with children $b, c, P(b)$ or $P(c)<P(a)$.
- $P(r)<1$ sufficient at root r.
- at leaf $l, P(l)=0$ or 1 .
- One big problem: need to compute these probabilities!

Pessimistic Estimators.

- Alternative to computing probabilities
- three neceessary conditions:
- $\hat{P}(r)<1$
$-\min \{\hat{P}(b), \hat{P}(c)\}<\hat{P}(a)$
- \hat{P} computable

Imply can use \hat{P} instead of actual.

- Let $Q_{i}=\operatorname{Pr}[$ unbalanced set $i]$
- Let $\hat{P}(a)=\sum \operatorname{Pr}\left[Q_{b} \mid a\right]$ at tree node a
- Claim 3 conditions.
- HW
- Result: deterministic $O(\sqrt{n \ln n})$ bias.
- more sophisticated pessimistic estimator for wiring.

Oblivious routing

- recall: choose random routing. Only $1 / N$ chance of failure
- Choose N^{3} random routines.
- whp, for every permutation, at most $2 N^{2}$ bad routes.
- given the N^{3} routes, pick one at random.
- so for any permutation, prob $2 / N$ of being bad.
- Advantage: N^{3} routes can be stored

