Admin

Method of Conditional Probabilities and Expectations

Derandomization.

- Theory: is $\mathrm{P}=\mathrm{RP}$?
- practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

- Imagine placing one vertex at a time.
- $x_{i}=0$ or 1 for left or right side
- $E[C]=(1 / 2) E\left[C \mid x_{1}=0\right]+(1 / 2) E\left[C \mid x_{1}=1\right]$
- Thus, either $E\left[C \mid x_{1}=0\right]$ or $E\left[C \mid X_{1}=1\right] \geq E[C]$
- Pick that one, continue
- More general, whole tree of element settings.
- Let $C(a)=E[C \mid a]$.
- For node a with children $b, c, C(b)$ or $C(c) \geq C(a)$.
- By induction, get to leaf with expected value at least $E[C]$
- But no randomness left, so that is actual cut value.
- Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

- Review set-balancing Chernoff bound
- Think of setting item at a time
- Let Q be bad event (unbalanced set)
- We know $\operatorname{Pr}[Q]<1 / n$.
- $\operatorname{Pr}[Q]=1 / 2 \operatorname{Pr}\left[Q \mid x_{i 0}\right]+1 / 2 \operatorname{Pr}\left[Q \mid x_{i 1}\right]$
- Follows that one of conditional probs. less than $\operatorname{Pr}[Q]<1 / n$.
- More general, whole tree of element settings.
- Let $P(a)=\operatorname{Pr}[Q \mid a]$.
- For node a with children $b, c, P(b)$ or $P(c)<P(a)$.
- $P(r)<1$ sufficient at root r.
- at leaf $l, P(l)=0$ or 1 .
- One big problem: need to compute these probabilities!

Pessimistic Estimators.

[Raghavan Thompson]
Alternative to computing probabilities
three neceessary conditions:

- $\hat{P}(r)<1$
- $\min \{\hat{P}(b), \hat{P}(c)\}<\hat{P}(a)$
- \hat{P} computable

Imply can use \hat{P} instead of actual.
Our application:

- Let $Q_{i}=\operatorname{Pr}[$ unbalanced set $i]$
- Let $\hat{P}(a)=\sum \operatorname{Pr}\left[Q_{b} \mid a\right]$ at tree node a
- (union bound)
- what we actually worked with
- Claim 3 conditions.
- HW
- Result: deterministic $O(\sqrt{n \ln n})$ bias.
more sophisticated pessimistic estimator (based on chernoff) for wiring.

Pairwise Independence

pseudorandom generators.

- Motivation.
- Idea of randomness as (complexity theoretic) resource like space or time.
- sometime full independence unnecessary
- pairwise independent vars.
- generating over Z_{p}.
- Want random numbers in range $[1, \ldots, p]$
- pick random a, b
- $i^{\text {th }}$ random number $a i+b$
- Works because invertible over field
- If want over nonprime field, use "slightly larger" p

Max Cut

- Expected value $m / 2$
- Requires only pairwise independence
- try all possible seeds

Conserving Random Bits

- Recall Chebyshev inequality
- pairwise sufficient for chebyshev.
- Suppose $R P$ algorithm using n bits.
- What do with $2 n$ bits?
- two direct draws: error prob. $1 / 4$.
- pseudorandom generators gives error prob. $1 / t$ for t trials.
- $\mu=t / 2 . \sigma=\sqrt{t} / 2$.
- error if no cert, i.e. $Y-E[Y] \geq t / 2$, prob. $1 / t$.

