Admin

Hashing

Dictionaries

- Operations.
 - makeset, insert, delete, find

Model

- keys are integers in $M = \{1, \ldots, m\}$
- (so assume machine word size, or "unit time," is $\log m$)
- can store in array of size M
- using power: arithmetic, indirect addressing
- compare to comparison and pointer based sorting, binary trees
- problem: space.

Hashing:

- find function h mapping M into table of size $n \ll m$
- Note some items get mapped to same place: "collision"
- use linked list etc.
- search, insert cost equals size of linked list
- goal: keep linked lists small: few collisions

Hash families:

- problem: for any hash function, some bad input (if n items, then m/n items to same bucket)
- Solution: build family of functions, choose one that works well

Set of all functions?

- Idea: choose "function" that stores items in sorted order without collisions
- problem: to evaluate function, must examine all data
- evaluation time $\Omega(\log n)$.
- "description size" $\Omega(n \log m)$,

• Better goal: choose function that can be evaluated in constant time without looking at data (except query key)

How about a random function?

- set S of s items
- If s = n, balls in bins
 - $O((\log n)/(\log \log n))$ collisions w.h.p.
 - And matches that somewhere
 - but we care more about *average* collisions over many operations
 - $-C_{ij} = 1$ if i, j collide
 - Time to find *i* is $\sum_{j} C_{ij}$
 - expected value $(n-1)/n \le 1$
- more generally expected search time for item (present or not): O(s/n) = O(1) if s = n

Problem:

- n^m functions (specify one of n places for each of n items)
 - too much space to specify $(m \log n)$,
 - hard to evaluate
- for O(1) search time, need to identify function in O(1) time.
 - so function description must fit in O(1) machine words
 - Assuming log m bit words
 - So, fixed number of cells can only distinguish poly(m) functions
- This bounds size of hash family we can choose from

Our analysis:

- sloppier constants
- but more intuitive than book

2-universal family: [Carter-Wegman]

- how much independence was used above? pairwise (search item versus each other item)
- so: OK if items land *pairwise independent*
- pick p in range $m, \ldots, 2m$ (not random)
- pick random a, b

- map x to $(ax + b \mod p) \mod n$
 - pairwise independent, uniform before mod m
 - So pairwise independent, near-uniform after mod m
 - at most 2 "uniform buckets" to same place
- argument above holds: O(1) expected search time.
- represent with two $O(\log m)$ -bit integers: hash family of poly size.
- max load?
 - expected load in a bin is 1
 - so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
 - this bounds expected max-load
 - some item may have bad load, but unlikely to be the requested one
 - can show the max load is probably achieved for some 2-universal families

perfect hash families

- perfect hash function: no collisions
- for any S of $s \leq n$, perfect h in family
- eg, set of all functions
- but hash choice in table: $m^{O(1)}$ size family.
- exists iff $m = 2^{\Omega(n)}$ (probabilistic method) (hard computationally)
 - random function. $\Pr(\text{perfect}) = n!/n^n$
 - So take $n^n/n! \approx e^n$ functions. Pr(all bad) = 1/e
 - Number of subsets: at most m^n
 - So take $e^n \cdot \ln m^n = ne^n \ln m$ functions. Pr(all bad) $\leq 1/m^n$
 - So with nonzero probability, no set has all bad functions (union)
 - number of functions: $ne^n \ln m = m^{O(1)}$ if $m = 2^{\Omega(n)}$
- Too bad: only fit sets of $\log m$ items
- note one word contains n-bits—one per item
- also, hard computationally

Alternative try: use more space:

• How big can s be for random s to n without collisions?

- Expected number of collisions is $E[\sum C_{ij}] = {s \choose 2}(1/n) \approx s^2/2n$
- So $s = \sqrt{n}$ works with prob. 1/2 (markov)
- Is this best possible?
 - Birthday problem: $(1-1/n)\cdots(1-s/n) \approx e^{-(1/n+2/n+\cdots+s/n)} \approx e^{-s^2/2n}$
 - So, when $s = \sqrt{n}$ has $\Omega(1)$ chance of collision
 - -23 for birthdays

Two level hashing solves problem

- Hash s items into O(s) space 2-universally
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_k^2 = \sum_k (\sum_i [i \in b_k])^2 = \sum C_i + C_{ij}$
- expected value O(s).
- So try till get (markov)
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
- Easy: 6s cells
- Hard: s + o(s) cells (bit fiddling)

Derandomization

- Probability 1/2 top-level function works
- Only m^2 top-level functions
- Try them all!
- Polynomial in m (not n), deterministic algorithm

Fingerprinting

Basic idea: compare two things from a big universe U

- generally takes $\log U$, could be huge.
- Better: randomly map U to smaller V, compare elements of V.
- Probability(same) = 1/|V|

• intuition: $\log V$ bits to compare, error prob. 1/|V|

We work with *fields*

- add, subtract, mult, divide
- 0 and 1 elements
- eg reals, rats, (not ints)
- talk about Z_p
- which field often won't matter.

Verifying matrix multiplications:

- Claim AB = C
- check by mul: n^3 , or $n^{2.376}$ with deep math
- Freivald's $O(n^2)$.
- Good to apply at end of complex algorithm (check answer)

Freivald's technique:

- choose random $r \in \{0, 1\}^n$
- check ABr = Cr
- time $O(n^2)$
- if AB = C, fine.
- What if $AB \neq C$?
 - trouble if (AB C)r = 0 but $D = AB C \neq 0$
 - find some nonzero row (d_1, \ldots, d_n)
 - $\text{ wlog } d_1 \neq 0$
 - trouble if $\sum d_i r_i = 0$
 - ie $r_1 = (\sum_{i>1} d_i r_i)/d_1$
 - principle of deferred decisions: choose all $i \geq 2$ first
 - then have exactly one error value for r_1
 - prob. pick it is at most 1/2

How improve detection prob?

- -k trials makes $1/2^k$ failure.
- Or choosing $r \in [1, s]$ makes 1/s.

- Doesn't just do matrix mul.
 - check any matrix identity claim
 - useful when matrices are "implicit" (e.g. AB)
- We are mapping matrices $(n^2 \text{ entries})$ to vectors (n entries).

String matching

Checksums:

- Alice and Bob have bit strings of length n
- Think of n bit integers a, b
- take a prime number p, compare $a \mod p$ and $b \mod p$ with $\log p$ bits.
- trouble if $a = b \pmod{p}$. How avoid? How likely?
 - -c = a b is *n*-bit integer.
 - so at most n prime factors.
 - How many prime factors less than k? $\Theta(k/\ln k)$
 - so take $2n^2 \log n$ limit
 - number of primes about n^2
 - So on random one, 1/n error prob.
 - $-O(\log n)$ bits to send.
 - implement by add/sub, no mul or div!

How find prime?

- Well, a randomly chosen number is prime with prob. $1/\ln n$,
- so just try a few.
- How know its prime? Simple randomized test (later)

Pattern matching in strings

- *m*-bit pattern
- *n*-bit string
- work mod prime p of size at most t
- prob. error at particular point most $m/(t/\log t)$
- so pick big t, union bound
- implement by add/sub, no mul or div!

Fingerprints by Polynomials

Good for fingeerprinting "composable" data objects.

- check if P(x)Q(x) = R(x)
- P and Q of degree n (means R of degree at most 2n)
- mult in $O(n \log n)$ using FFT
- evaluation at fixed point in O(n) time
- Random test:
 - $-S \subseteq F$
 - pick random $r \in S$
 - evaluate P(r)Q(r) R(r)
 - suppose this poly not 0
 - then degree 2n, so at most 2n roots
 - thus, prob (discover nonroot) |S|/2n
 - so, eg, sufficient to pick random int in [0, 4n]
 - Note: no prime needed (but needed for Z_p sometimes)
- Again, major benefit if polynomial implicitly specified.

String checksum:

- treat as degree n polynomial
- eval a random $O(\log n)$ bit input,
- prob. get 0 small

Multivariate:

- *n* variables
- degree of term: sum of vars degrees
- total degree d: max degree of term.
- Schwartz-Zippel: fix $S \subseteq F$ and let each r_i random in S

$$\Pr[Q(r_i) = 0 \mid Q \neq 0] \le d/|S|$$

Note: no dependence on number of vars!

Proof:

- induction. Base done.
- $Q \neq 0$. So pick some (say) x_1 that affects Q
- write $Q = \sum_{i \le k} x_1^i Q_i(x_2, \dots, x_n)$ with $Q_k() \ne 0$ by choice of k
- Q_k has total degree at most d k
- By induction, prob Q_k evals to 0 is at most (d-k)/|S|
- suppose it didn't. Then $q(x) = \sum x_1^i Q(r_2, \ldots, r_n)$ is a nonzero univariate poly.
- by base, prob. eval to 0 is k/|S|
- add: get d/|S|
- why can we add?

$$\Pr[E_1] = \Pr[E_1 \cap \overline{E_2}] + \Pr[E_1 \cap E_2]$$

$$\leq \Pr[E_1 \mid \overline{E_2}] + \Pr[E_2]$$

Small problem:

- degree n poly can generate huge values from small inputs.
- Solution 1:
 - If poly is over Z_p , can do all math mod p
 - Need p exceeding coefficients, degree
 - -p need not be random
- Solution 2:
 - Work in Z
 - but all computation mod random q (as in string matching)

Perfect matching

- Define
- Edmonds matrix: variable x_{ij} if edge (u_i, v_j)
- determinant nonzero if PM
- poly nonzero *symbolically*.
 - so apply Schwartz-Zippel
 - Degree is n
 - So number $r \in (1, \ldots, n^2)$ yields 0 with prob. 1/n

Det may be huge!

- We picked random input r, knew evaled to nonzero but maybe huge number
- How big? About $n!r^n$,
- So only $O(n \log n + n \log r)$ prime divisors
- (or, a string of that many bits)
- So compute mod p, where p is $O((n \log n + n \log r)^2)$
- only need $O(\log n + \log \log r)$ bits