
Admin

Hashing

Dictionaries

•	 Operations.

– makeset, insert, delete, find

Model

•	 keys are integers in M = {1, . . . , m}

•	 (so assume machine word size, or “unit time,” is log m)

•	 can store in array of size M

•	 using power: arithmetic, indirect addressing

•	 compare to comparison and pointer based sorting, binary trees

• problem: space.

Hashing:

•	 find function h mapping M into table of size n � m

•	 Note some items get mapped to same place: “collision”

use linked list etc.
•

•	 search, insert cost equals size of linked list

• goal: keep linked lists small: few collisions

Hash families:

•	 problem: for any hash function, some bad input (if n items, then m/n items to same
bucket)

•	 Solution: build family of functions, choose one that works well

Set of all functions?

Idea: choose “function” that stores items in sorted order without collisions •

•	 problem: to evaluate function, must examine all data

•	 evaluation time Ω(log n).

•	 “description size” Ω(n log m),

1

�

•	 Better goal: choose function that can be evaluated in constant time without looking
at data (except query key)

How about a random function?

set S of s items•

•	 If s = n, balls in bins

–	 O((log n)/(log log n)) collisions w.h.p.

–	 And matches that somewhere

–	 but we care more about average collisions over many operations

–	 Cij = 1 if i, j collide

–	 Time to find i is j Cij

–	 expected value (n − 1)/n ≤ 1

• more generally expected search time for item (present or not): O(s/n) = O(1) if s = n

Problem:

•	 nm functions (specify one of n places for each of n items)

–	 too much space to specify (m log n),

–	 hard to evaluate

•	 for O(1) search time, need to identify function in O(1) time.

–	 so function description must fit in O(1) machine words

–	 Assuming log m bit words

–	 So, fixed number of cells can only distinguish poly(m) functions

• This bounds size of hash family we can choose from

Our analysis:

•	 sloppier constants

but more intuitive than book
•

2-universal family: [Carter-Wegman]

•	 how much independence was used above? pairwise (search item versus each other item)

•	 so: OK if items land pairwise independent

•	 pick p in range m, . . . , 2m (not random)

•	 pick random a, b

2

•	 map x to (ax + b mod p) mod n

–	 pairwise independent, uniform before mod m

–	 So pairwise independent, near-uniform after mod m

–	 at most 2 “uniform buckets” to same place

•	 argument above holds: O(1) expected search time.

•	 represent with two O(log m)-bit integers: hash family of poly size.

max load?
•

–	 expected load in a bin is 1

–	 so O(
√

n) with prob. 1-1/n (chebyshev).

–	 this bounds expected max-load

–	 some item may have bad load, but unlikely to be the requested one

–	 can show the max load is probably achieved for some 2-universal families

perfect hash families

•	 perfect hash function: no collisions

•	 for any S of s ≤ n, perfect h in family

•	 eg, set of all functions

•	 but hash choice in table: mO(1) size family.

•	 exists iff m = 2Ω(n) (probabilistic method) (hard computationally)

–	 random function. Pr(perfect)= n!/nn

–	 So take nn/n! ≈ en functions. Pr(all bad)= 1/e

n
–	 Number of subsets: at most m

n n–	 So take e ln m = nen ln m functions. Pr(all bad)≤ 1/mn ·
–	 So with nonzero probability, no set has all bad functions (union)

–	 number of functions: nen ln m = mO(1) if m = 2Ω(n)

•	 Too bad: only fit sets of log m items

•	 note one word contains n-bits—one per item

•	 also, hard computationally

Alternative try: use more space:

•	 How big can s be for random s to n without collisions?

3

� � �

� � � �

– Expected number of collisions is E[Cij] = s (1/n) ≈ s2/2n
2

– So s =
√

n works with prob. 1/2 (markov)

• Is this best possible?

– Birthday problem: (1 − 1/n) · · · (1 − s/n) ≈ e−(1/n+2/n+···+s/n) ≈ e−s2/2n

– So, when s =
√

n has Ω(1) chance of collision

– 23 for birthdays

Two level hashing solves problem

• Hash s items into O(s) space 2-universally

• Build quadratic size hash table on contents of each bucket

• bound b2 = k (i[i ∈ bk])
2 = Ci + Cijk

• expected value O(s).

• So try till get (markov)

• Then build collision-free quadratic tables inside

• Try till get

• Polynomial time in s, Las-vegas algorithm

• Easy: 6s cells

• Hard: s + o(s) cells (bit fiddling)

Derandomization

• Probability 1/2 top-level function works

• Only m2 top-level functions

• Try them all!

• Polynomial in m (not n), deterministic algorithm

Fingerprinting

Basic idea: compare two things from a big universe U

• generally takes log U , could be huge.

• Better: randomly map U to smaller V , compare elements of V .

• Probability(same)= 1/|V |

4

�

�	 � �

• �

•	 intuition: log V bits to compare, error prob. 1/|V |

We work with fields

•	 add, subtract, mult, divide

0 and 1 elements
•

•	 eg reals, rats, (not ints)

talk about Zp
•

which field often won’t matter. •

Verifying matrix multiplications:

Claim AB = C•

•	 check by mul: n3, or n2.376 with deep math

•	 Freivald’s O(n2).

• Good to apply at end of complex algorithm (check answer)

Freivald’s technique:

n •	 choose random r ∈ {0, 1}

check ABr = Cr
•

•	 time O(n2)

•	 if AB = C, fine.

What if AB = C?

– trouble if (AB − C)r = 0 but D = AB − C = 0

–	 find some nonzero row (d1, . . . , dn)

–	 wlog d1 = 0

–	 trouble if diri = 0

–	 ie r1 = (diri)/d1i>1

–	 principle of deferred decisions: choose all i ≥ 2 first

–	 then have exactly one error value for r1

– prob. pick it is at most 1/2

How improve detection prob?

–	 k trials makes 1/2k failure.

–	 Or choosing r ∈ [1, s] makes 1/s.

5

• Doesn’t just do matrix mul.

– check any matrix identity claim

– useful when matrices are “implicit” (e.g. AB)

• We are mapping matrices (n2 entries) to vectors (n entries).

String matching

Checksums:

• Alice and Bob have bit strings of length n

• Think of n bit integers a, b

• take a prime number p, compare a mod p and b mod p with log p bits.

• trouble if a = b (mod p). How avoid? How likely?

– c = a − b is n-bit integer.

– so at most n prime factors.

– How many prime factors less than k? Θ(k/ ln k)

– so take 2n2 log n limit

– number of primes about n2

– So on random one, 1/n error prob.

– O(log n) bits to send.

– implement by add/sub, no mul or div!

How find prime?

– Well, a randomly chosen number is prime with prob. 1/ ln n,

– so just try a few.

– How know its prime? Simple randomized test (later)

Pattern matching in strings

• m-bit pattern

• n-bit string

• work mod prime p of size at most t

• prob. error at particular point most m/(t/ log t)

• so pick big t, union bound

• implement by add/sub, no mul or div!

6

| � | |

Fingerprints by Polynomials

Good for fingeerprinting “composable” data objects.

•	 check if P (x)Q(x) = R(x)

•	 P and Q of degree n (means R of degree at most 2n)

•	 mult in O(n log n) using FFT

•	 evaluation at fixed point in O(n) time

Random test:
•

–	 S ⊆ F

–	 pick random r ∈ S

–	 evaluate P (r)Q(r) − R(r)

–	 suppose this poly not 0

–	 then degree 2n, so at most 2n roots

–	 thus, prob (discover nonroot) |S|/2n

–	 so, eg, sufficient to pick random int in [0, 4n]

–	 Note: no prime needed (but needed for Zp sometimes)

• Again, major benefit if polynomial implicitly specified.

String checksum:

•	 treat as degree n polynomial

•	 eval a random O(log n) bit input,

•	 prob. get 0 small

Multivariate:

n variables •

•	 degree of term: sum of vars degrees

•	 total degree d: max degree of term.

•	 Schwartz-Zippel: fix S ⊆ F and let each ri random in S

Pr[Q(ri) = 0 Q = 0] ≤ d/ S

Note: no dependence on number of vars!

Proof:

7

� �
�

�

induction. Base done. •

•	 Q = 0. So pick some (say) x1 that affects Q

•	 write Q = i≤k x1
i Qi(x2, . . . , xn) with Qk () = 0 by choice of k

•	 Qk has total degree at most d− k

•	 By induction, prob Qk evals to 0 is at most (d− k)/ S|	 |

•	 suppose it didn’t. Then q(x) = x1
i Q(r2, . . . , rn) is a nonzero univariate poly.

•	 by base, prob. eval to 0 is k/|S|

•	 add: get d/|S|

•	 why can we add?

Pr[E1] =	 Pr[E1 ∩ E2] + Pr[E1 ∩ E2]

Pr[E1 | E2] + Pr[E2]≤

Small problem:

•	 degree n poly can generate huge values from small inputs.

Solution 1:
•

–	 If poly is over Zp, can do all math mod p

–	 Need p exceeding coefficients, degree

– p need not be random

Solution 2:
•

–	 Work in Z

–	 but all computation mod random q (as in string matching)

Perfect matching

Define•

•	 Edmonds matrix: variable xij if edge (ui, vj)

determinant nonzero if PM
•

•	 poly nonzero symbolically.

–	 so apply Schwartz-Zippel

–	 Degree is n

–	 So number r ∈ (1, . . . , n2) yields 0 with prob. 1/n

8

Det may be huge!

• We picked random input r, knew evaled to nonzero but maybe huge number

n • How big? About n!r ,

• So only O(n log n + n log r) prime divisors

• (or, a string of that many bits)

• So compute mod p, where p is O((n log n + n log r)2)

• only need O(log n + log log r) bits

9

