Admin

Hashing

Dictionaries

- Operations.
- makeset, insert, delete, find

Model

- keys are integers in $M=\{1, \ldots, m\}$
- (so assume machine word size, or "unit time," is $\log m$)
- can store in array of size M
- using power: arithmetic, indirect addressing
- compare to comparison and pointer based sorting, binary trees
- problem: space.

Hashing:

- find function h mapping M into table of size $n \ll m$
- Note some items get mapped to same place: "collision"
- use linked list etc.
- search, insert cost equals size of linked list
- goal: keep linked lists small: few collisions

Hash families:

- problem: for any hash function, some bad input (if n items, then m / n items to same bucket)
- Solution: build family of functions, choose one that works well

Set of all functions?

- Idea: choose "function" that stores items in sorted order without collisions
- problem: to evaluate function, must examine all data
- evaluation time $\Omega(\log n)$.
- "description size" $\Omega(n \log m)$,
- Better goal: choose function that can be evaluated in constant time without looking at data (except query key)

How about a random function?

- set S of s items
- If $s=n$, balls in bins
- $O((\log n) /(\log \log n))$ collisions w.h.p.
- And matches that somewhere
- but we care more about average collisions over many operations
- $C_{i j}=1$ if i, j collide
- Time to find i is $\sum_{j} C_{i j}$
- expected value $(n-1) / n \leq 1$
- more generally expected search time for item (present or not): $O(s / n)=O(1)$ if $s=n$ Problem:
- n^{m} functions (specify one of n places for each of n items)
- too much space to specify $(m \log n)$,
- hard to evaluate
- for $O(1)$ search time, need to identify function in $O(1)$ time.
- so function description must fit in $O(1)$ machine words
- Assuming $\log m$ bit words
- So, fixed number of cells can only distinguish $\operatorname{poly}(m)$ functions
- This bounds size of hash family we can choose from

Our analysis:

- sloppier constants
- but more intuitive than book

2-universal family: [Carter-Wegman]

- how much independence was used above? pairwise (search item versus each other item)
- so: OK if items land pairwise independent
- pick p in range $m, \ldots, 2 m$ (not random)
- pick random a, b
- map x to $(a x+b \bmod p) \bmod n$
- pairwise independent, uniform before $\bmod m$
- So pairwise independent, near-uniform after $\bmod m$
- at most 2 "uniform buckets" to same place
- argument above holds: $O(1)$ expected search time.
- represent with two $O(\log m)$-bit integers: hash family of poly size.
- max load?
- expected load in a bin is 1
- so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
- this bounds expected max-load
- some item may have bad load, but unlikely to be the requested one
- can show the max load is probably achieved for some 2-universal families

perfect hash families

- perfect hash function: no collisions
- for any S of $s \leq n$, perfect h in family
- eg, set of all functions
- but hash choice in table: $m^{O(1)}$ size family.
- exists iff $m=2^{\Omega(n)}$ (probabilistic method) (hard computationally)
- random function. $\operatorname{Pr}($ perfect $)=n!/ n^{n}$
- So take $n^{n} / n!\approx e^{n}$ functions. $\operatorname{Pr}($ all bad $)=1 / e$
- Number of subsets: at most m^{n}
- So take $e^{n} \cdot \ln m^{n}=n e^{n} \ln m$ functions. $\operatorname{Pr}($ all bad $) \leq 1 / m^{n}$
- So with nonzero probability, no set has all bad functions (union)
- number of functions: $n e^{n} \ln m=m^{O(1)}$ if $m=2^{\Omega(n)}$
- Too bad: only fit sets of $\log m$ items
- note one word contains n-bits-one per item
- also, hard computationally

Alternative try: use more space:

- How big can s be for random s to n without collisions?
- Expected number of collisions is $E\left[\sum C_{i j}\right]=\binom{s}{2}(1 / n) \approx s^{2} / 2 n$
- So $s=\sqrt{n}$ works with prob. 1/2 (markov)
- Is this best possible?
- Birthday problem: $(1-1 / n) \cdots(1-s / n) \approx e^{-(1 / n+2 / n+\cdots+s / n)} \approx e^{-s^{2} / 2 n}$
- So, when $s=\sqrt{n}$ has $\Omega(1)$ chance of collision
- 23 for birthdays

Two level hashing solves problem

- Hash s items into $O(s)$ space 2-universally
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_{k}^{2}=\sum_{k}\left(\sum_{i}\left[i \in b_{k}\right]\right)^{2}=\sum C_{i}+C_{i j}$
- expected value $O(s)$.
- So try till get (markov)
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
- Easy: $6 s$ cells
- Hard: $s+o(s)$ cells (bit fiddling)

Derandomization

- Probability $1 / 2$ top-level function works
- Only m^{2} top-level functions
- Try them all!
- Polynomial in m (not n), deterministic algorithm

Fingerprinting

Basic idea: compare two things from a big universe U

- generally takes $\log U$, could be huge.
- Better: randomly map U to smaller V, compare elements of V.
- Probability $($ same $)=1 /|V|$
- intuition: $\log V$ bits to compare, error prob. $1 /|V|$

We work with fields

- add, subtract, mult, divide
- 0 and 1 elements
- eg reals, rats, (not ints)
- talk about Z_{p}
- which field often won't matter.

Verifying matrix multiplications:

- Claim $A B=C$
- check by mul: n^{3}, or $n^{2.376}$ with deep math
- Freivald's $O\left(n^{2}\right)$.
- Good to apply at end of complex algorithm (check answer)

Freivald's technique:

- choose random $r \in\{0,1\}^{n}$
- check $A B r=C r$
- time $O\left(n^{2}\right)$
- if $A B=C$, fine.
- What if $A B \neq C$?
- trouble if $(A B-C) r=0$ but $D=A B-C \neq 0$
- find some nonzero row $\left(d_{1}, \ldots, d_{n}\right)$
- wlog $d_{1} \neq 0$
- trouble if $\sum d_{i} r_{i}=0$
- ie $r_{1}=\left(\sum_{i>1} d_{i} r_{i}\right) / d_{1}$
- principle of deferred decisions: choose all $i \geq 2$ first
- then have exactly one error value for r_{1}
- prob. pick it is at most $1 / 2$

How improve detection prob?

- k trials makes $1 / 2^{k}$ failure.
- Or choosing $r \in[1, s]$ makes $1 / s$.
- Doesn't just do matrix mul.
- check any matrix identity claim
- useful when matrices are "implicit" (e.g. $A B$)
- We are mapping matrices (n^{2} entries) to vectors (n entries).

String matching

Checksums:

- Alice and Bob have bit strings of length n
- Think of n bit integers a, b
- take a prime number p, compare $a \bmod p$ and $b \bmod p$ with $\log p$ bits.
- trouble if $a=b(\bmod p)$. How avoid? How likely?
$-c=a-b$ is n-bit integer.
- so at most n prime factors.
- How many prime factors less than $k ? \Theta(k / \ln k)$
- so take $2 n^{2} \log n$ limit
- number of primes about n^{2}
- So on random one, $1 / n$ error prob.
- $O(\log n)$ bits to send.
- implement by add/sub, no mul or div!

How find prime?

- Well, a randomly chosen number is prime with prob. $1 / \ln n$,
- so just try a few.
- How know its prime? Simple randomized test (later)

Pattern matching in strings

- m-bit pattern
- n-bit string
- work mod prime p of size at most t
- prob. error at particular point most $m /(t / \log t)$
- so pick big t, union bound
- implement by add/sub, no mul or div!

Fingerprints by Polynomials

Good for fingeerprinting "composable" data objects.

- check if $P(x) Q(x)=R(x)$
- P and Q of degree n (means R of degree at most $2 n$)
- mult in $O(n \log n)$ using FFT
- evaluation at fixed point in $O(n)$ time
- Random test:
$-S \subseteq F$
- pick random $r \in S$
- evaluate $P(r) Q(r)-R(r)$
- suppose this poly not 0
- then degree $2 n$, so at most $2 n$ roots
- thus, prob (discover nonroot) $|S| / 2 n$
- so, eg, sufficient to pick random int in $[0,4 n]$
- Note: no prime needed (but needed for Z_{p} sometimes)
- Again, major benefit if polynomial implicitly specified.

String checksum:

- treat as degree n polynomial
- eval a random $O(\log n)$ bit input,
- prob. get 0 small

Multivariate:

- n variables
- degree of term: sum of vars degrees
- total degree d : max degree of term.
- Schwartz-Zippel: fix $S \subseteq F$ and let each r_{i} random in S

$$
\operatorname{Pr}\left[Q\left(r_{i}\right)=0 \mid Q \neq 0\right] \leq d /|S|
$$

Note: no dependence on number of vars!
Proof:

- induction. Base done.
- $Q \neq 0$. So pick some (say) x_{1} that affects Q
- write $Q=\sum_{i \leq k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)$ with $Q_{k}() \neq 0$ by choice of k
- Q_{k} has total degree at most $d-k$
- By induction, prob Q_{k} evals to 0 is at most $(d-k) /|S|$
- suppose it didn't. Then $q(x)=\sum x_{1}^{i} Q\left(r_{2}, \ldots, r_{n}\right)$ is a nonzero univariate poly.
- by base, prob. eval to 0 is $k /|S|$
- add: get $d /|S|$
- why can we add?

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =\operatorname{Pr}\left[E_{1} \cap \overline{E_{2}}\right]+\operatorname{Pr}\left[E_{1} \cap E_{2}\right] \\
& \leq \operatorname{Pr}\left[E_{1} \mid \overline{E_{2}}\right]+\operatorname{Pr}\left[E_{2}\right]
\end{aligned}
$$

Small problem:

- degree n poly can generate huge values from small inputs.
- Solution 1:
- If poly is over Z_{p}, can do all math $\bmod p$
- Need p exceeding coefficients, degree
- p need not be random
- Solution 2:
- Work in Z
- but all computation mod random q (as in string matching)

Perfect matching

- Define
- Edmonds matrix: variable $x_{i j}$ if edge $\left(u_{i}, v_{j}\right)$
- determinant nonzero if PM
- poly nonzero symbolically.
- so apply Schwartz-Zippel
- Degree is n
- So number $r \in\left(1, \ldots, n^{2}\right)$ yields 0 with prob. $1 / n$

Det may be huge!

- We picked random input r, knew evaled to nonzero but maybe huge number
- How big? About $n!r^{n}$,
- So only $O(n \log n+n \log r)$ prime divisors
- (or, a string of that many bits)
- So compute $\bmod p$, where p is $O\left((n \log n+n \log r)^{2}\right)$
- only need $O(\log n+\log \log r)$ bits

