
Admin 

Hashing 

Dictionaries 

•	 Operations. 

– makeset, insert, delete, find 

Model 

•	 keys are integers in M = {1, . . . , m} 

•	 (so assume machine word size, or “unit time,” is log m) 

•	 can store in array of size M 

•	 using power: arithmetic, indirect addressing 

•	 compare to comparison and pointer based sorting, binary trees 

• problem: space. 

Hashing: 

•	 find function h mapping M into table of size n � m 

•	 Note some items get mapped to same place: “collision”


use linked list etc.
• 

•	 search, insert cost equals size of linked list 

• goal: keep linked lists small: few collisions 

Hash families: 

•	 problem: for any hash function, some bad input (if n items, then m/n items to same 
bucket) 

•	 Solution: build family of functions, choose one that works well 

Set of all functions? 

Idea: choose “function” that stores items in sorted order without collisions • 

•	 problem: to evaluate function, must examine all data 

•	 evaluation time Ω(log n). 

•	 “description size” Ω(n log m), 
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•	 Better goal: choose function that can be evaluated in constant time without looking 
at data (except query key) 

How about a random function? 

set S of s items• 

•	 If s = n, balls in bins 

–	 O((log n)/(log log n)) collisions w.h.p. 

–	 And matches that somewhere 

–	 but we care more about average collisions over many operations 

–	 Cij = 1 if i, j collide 

–	 Time to find i is j Cij 

–	 expected value (n − 1)/n ≤ 1 

• more generally expected search time for item (present or not): O(s/n) = O(1) if s = n 

Problem: 

•	 nm functions (specify one of n places for each of n items) 

–	 too much space to specify (m log n), 

–	 hard to evaluate 

•	 for O(1) search time, need to identify function in O(1) time. 

–	 so function description must fit in O(1) machine words 

–	 Assuming log m bit words 

–	 So, fixed number of cells can only distinguish poly(m) functions 

• This bounds size of hash family we can choose from 

Our analysis: 

•	 sloppier constants


but more intuitive than book
• 

2-universal family: [Carter-Wegman] 

•	 how much independence was used above? pairwise (search item versus each other item) 

•	 so: OK if items land pairwise independent 

•	 pick p in range m, . . . , 2m (not random) 

•	 pick random a, b 
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•	 map x to (ax + b mod p) mod n 

–	 pairwise independent, uniform before mod m 

–	 So pairwise independent, near-uniform after mod m 

–	 at most 2 “uniform buckets” to same place 

•	 argument above holds: O(1) expected search time. 

•	 represent with two O(log m)-bit integers: hash family of poly size.


max load?
• 

–	 expected load in a bin is 1 

–	 so O(
√

n) with prob. 1-1/n (chebyshev). 

–	 this bounds expected max-load 

–	 some item may have bad load, but unlikely to be the requested one 

–	 can show the max load is probably achieved for some 2-universal families 

perfect hash families 

•	 perfect hash function: no collisions 

•	 for any S of s ≤ n, perfect h in family 

•	 eg, set of all functions 

•	 but hash choice in table: mO(1) size family. 

•	 exists iff m = 2Ω(n) (probabilistic method) (hard computationally) 

–	 random function. Pr(perfect)= n!/nn 

–	 So take nn/n! ≈ en functions. Pr(all bad)= 1/e

n
–	 Number of subsets: at most m

n n–	 So take e ln m = nen ln m functions. Pr(all bad)≤ 1/mn · 
–	 So with nonzero probability, no set has all bad functions (union) 

–	 number of functions: nen ln m = mO(1) if m = 2Ω(n) 

•	 Too bad: only fit sets of log m items 

•	 note one word contains n-bits—one per item 

•	 also, hard computationally 

Alternative try: use more space: 

•	 How big can s be for random s to n without collisions? 
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– Expected number of collisions is E[ Cij ] = s (1/n) ≈ s2/2n
2 

– So s = 
√

n works with prob. 1/2 (markov) 

• Is this best possible? 

– Birthday problem: (1 − 1/n) · · · (1 − s/n) ≈ e−(1/n+2/n+···+s/n) ≈ e−s2/2n 

– So, when s = 
√

n has Ω(1) chance of collision 

– 23 for birthdays 

Two level hashing solves problem 

• Hash s items into O(s) space 2-universally 

• Build quadratic size hash table on contents of each bucket 

• bound b2 = k ( i[i ∈ bk ])
2 = Ci + Cijk 

• expected value O(s). 

• So try till get (markov) 

• Then build collision-free quadratic tables inside 

• Try till get 

• Polynomial time in s, Las-vegas algorithm 

• Easy: 6s cells 

• Hard: s + o(s) cells (bit fiddling) 

Derandomization 

• Probability 1/2 top-level function works 

• Only m2 top-level functions 

• Try them all! 

• Polynomial in m (not n), deterministic algorithm 

Fingerprinting 

Basic idea: compare two things from a big universe U 

• generally takes log U , could be huge. 

• Better: randomly map U to smaller V , compare elements of V . 

• Probability(same)= 1/|V | 
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•	 intuition: log V bits to compare, error prob. 1/|V | 

We work with fields 

•	 add, subtract, mult, divide


0 and 1 elements
• 

•	 eg reals, rats, (not ints)


talk about Zp
• 

which field often won’t matter. • 

Verifying matrix multiplications: 

Claim AB = C• 

•	 check by mul: n3, or n2.376 with deep math 

•	 Freivald’s O(n2). 

• Good to apply at end of complex algorithm (check answer) 

Freivald’s technique: 

n •	 choose random r ∈ {0, 1}


check ABr = Cr
• 

•	 time O(n2) 

•	 if AB = C, fine.


What if AB = C?


– trouble if (AB − C)r = 0 but D = AB − C = 0 

–	 find some nonzero row (d1, . . . , dn) 

–	 wlog d1 = 0 

–	 trouble if diri = 0 

–	 ie r1 = ( diri)/d1i>1 

–	 principle of deferred decisions: choose all i ≥ 2 first 

–	 then have exactly one error value for r1 

– prob. pick it is at most 1/2


How improve detection prob?


–	 k trials makes 1/2k failure. 

–	 Or choosing r ∈ [1, s] makes 1/s. 
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• Doesn’t just do matrix mul. 

– check any matrix identity claim 

– useful when matrices are “implicit” (e.g. AB) 

• We are mapping matrices (n2 entries) to vectors (n entries). 

String matching 

Checksums: 

• Alice and Bob have bit strings of length n 

• Think of n bit integers a, b 

• take a prime number p, compare a mod p and b mod p with log p bits. 

• trouble if a = b (mod p). How avoid? How likely? 

– c = a − b is n-bit integer. 

– so at most n prime factors. 

– How many prime factors less than k? Θ(k/ ln k) 

– so take 2n2 log n limit 

– number of primes about n2 

– So on random one, 1/n error prob. 

– O(log n) bits to send. 

– implement by add/sub, no mul or div!


How find prime?


– Well, a randomly chosen number is prime with prob. 1/ ln n, 

– so just try a few. 

– How know its prime? Simple randomized test (later) 

Pattern matching in strings 

• m-bit pattern 

• n-bit string 

• work mod prime p of size at most t 

• prob. error at particular point most m/(t/ log t) 

• so pick big t, union bound 

• implement by add/sub, no mul or div! 
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Fingerprints by Polynomials 

Good for fingeerprinting “composable” data objects. 

•	 check if P (x)Q(x) = R(x) 

•	 P and Q of degree n (means R of degree at most 2n) 

•	 mult in O(n log n) using FFT 

•	 evaluation at fixed point in O(n) time


Random test:
• 

–	 S ⊆ F 

–	 pick random r ∈ S 

–	 evaluate P (r)Q(r) − R(r) 

–	 suppose this poly not 0 

–	 then degree 2n, so at most 2n roots 

–	 thus, prob (discover nonroot) |S|/2n 

–	 so, eg, sufficient to pick random int in [0, 4n] 

–	 Note: no prime needed (but needed for Zp sometimes) 

• Again, major benefit if polynomial implicitly specified. 

String checksum: 

•	 treat as degree n polynomial 

•	 eval a random O(log n) bit input, 

•	 prob. get 0 small 

Multivariate: 

n variables • 

•	 degree of term: sum of vars degrees 

•	 total degree d: max degree of term. 

•	 Schwartz-Zippel: fix S ⊆ F and let each ri random in S 

Pr[Q(ri) = 0 Q = 0] ≤ d/ S

Note: no dependence on number of vars! 

Proof: 
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induction. Base done. • 

•	 Q = 0. So pick some (say) x1 that affects Q 

•	 write Q = i≤k x1
i Qi(x2, . . . , xn) with Qk () = 0 by choice of k 

•	 Qk has total degree at most d− k 

•	 By induction, prob Qk evals to 0 is at most (d− k)/ S|	 | 

•	 suppose it didn’t. Then q(x) = x1
i Q(r2, . . . , rn) is a nonzero univariate poly. 

•	 by base, prob. eval to 0 is k/|S| 

•	 add: get d/|S| 

•	 why can we add? 

Pr[E1] =	 Pr[E1 ∩ E2] + Pr[E1 ∩ E2] 

Pr[E1 | E2] + Pr[E2]≤ 

Small problem: 

•	 degree n poly can generate huge values from small inputs.


Solution 1:
• 

–	 If poly is over Zp, can do all math mod p 

–	 Need p exceeding coefficients, degree 

– p need not be random


Solution 2:
• 

–	 Work in Z 

–	 but all computation mod random q (as in string matching) 

Perfect matching 

Define• 

•	 Edmonds matrix: variable xij if edge (ui, vj )


determinant nonzero if PM
• 

•	 poly nonzero symbolically. 

–	 so apply Schwartz-Zippel 

–	 Degree is n 

–	 So number r ∈ (1, . . . , n2) yields 0 with prob. 1/n 
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Det may be huge! 

• We picked random input r, knew evaled to nonzero but maybe huge number 

n • How big? About n!r , 

• So only O(n log n + n log r) prime divisors 

• (or, a string of that many bits) 

• So compute mod p, where p is O((n log n + n log r)2)


• only need O(log n + log log r) bits
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