
6.857 Homework Problem Set 2 # 2-1 Rainbow Tables
April 11, 2014

a) We can create a one-to-one table that maps {0, 1}6 to a set of the alphanumeric symbols ([A
Za-z0-9 -]). Given that table, we can map {0, 1}60 to an element of S, we will call the mapping l
and the inverse mapping l'. We can then use repeated applications of h to generate f . We take the
first 60 bits of the input to f , and apply h(l(N)) to get a value of the form {0, 1}128 . We can then
take then take that value and XOR it with the input to f . We then take the next 60 bits of the
new input and repeat the operation, continuing until we have less than 60 bits remaining in the
input. At this point, we simply take the final 60 bits of the new input, and apply l(N), resulting
in an output in S. Since each of the intermediate values is psuedorandom, as a property of h, and
the XOR operation does not reduce this, the final output is a psuedorandom function on the entire
input.

b) We have the following elements within a chain of k passwords and k password hashes:

h f h f h
P1 − − − − −→ H1 → P2 → H2 → ... → Hk

where Pi is the i’th password in the hash chain and Hi is the i’th hash in the hash chain, and
h(Pi) = Hi. Given a table mapping Hk to P1, we can retrieve the password of any given intermediate
hash, Hj , in this chain by applying functions f and h alternately to the given hash until we reach a
Pj such that h(Pj) = Hj . If we reach the case where the output of applying h gives the entry in the
table (another words, we have reached Hk), we restart this process with the P1 in the table, and
apply h and f alternately. Since the chain has length k, the longest running time is O(k), because
we will at most apply k operations of h and f before discovering the entire chain.

c) The logic for this question does not differ much from the logic in part (b). If we are given an
H ' which occurs in one of the chains, we can alternately apply f and h until we reach an entry
within the table. Once we reach one of the Hk which occurs in the table, we know to which chain
it belongs, and can alternately apply h and f , starting with the P1 from the table, until we reach
a Pj such that h(Pj) = H '. Again, we are guaranteed that we apply at most k operations of f and
h before discovering the entire chain to which H ' belongs.

If we create |S|/k chains of length k, we will have |S| passwords, though they are very unlikely
to be distinct. For every element in |S|, h will deterministically map it to exactly one element in
{0, 1}d . Another words, we will get at most |S| elements in the output space of h (the hash space),
despite it’s size of 2d . Therefore, we can consider both our password and hash spaces to be at most
of size |S|.

Taking f to be pseudo-random, the probability of two distinct elements of {0, 1}d to map to the
same element of output is 1/|S|. More formally,

1
Pr(f(Hi) = f(Hj), Hi = Hj) =

|S| |S|Since we consider at most |S| elements of the hash space, we will have = |S|(|S|−1)/2 possible 2
pairs in our hash space, so we expect there to be collisions in applying f from our hash space back
to our password space. We expect:

|S|(|S| − 1) 1 |S| − 1
E(number of collisions) = · =

2 |S| 2

1

Because we assumed |S| unique hashes to begin with (which may already be an over-estimate)
and expect almost half the pairs to contain a collision, we are very unlikely to have |S| distinct
passwords.

d) We note that previously in part (c), if we were to use the same f at each step, once f(H ') =
' '' f(H ''), two chains will converge, regardless of whether H and H were in the same step of the

chain or not. One chain may end earlier than the other, but there is guaranteed to be overlap
between them.

However, in this scenario, where a different fi is used for each step, we are much more likely to get
unique passwords and therefore hashes. For example, two chains will converge in the case where
fi(H ') = fj (H '') and i = j because this is the case where a collision happened in the same round.
But when i = j and fi(H ') = fj (H ''), we are not guaranteed convergence of the chains because
fi+1 and fj+1 are not guaranteed to produce the same result (and in fact, are very unlikely to).

e) One solution is to store h(h(password)||salt), where || is the concatenation operator. salt is
generated randomly and is not secret. For the adversary to crack the password, he/she would have
to generate a rainbow table for each possible value of salt. If the salt is large enough, it would be
infeasible for the adversary to do so.

2

6

MIT OpenCourseWare
http://ocw.mit.edu

6.857 Network and Computer Security
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

