
6.857 Homework Problem Set 3 # 3-3 - Kalns

Anonymous April 15, 2014

a) Our suspicion is well founded, which we can see from a very simple analysis. Consider an orig
inal key combination (A, b, S), where we call Ax + b = v. Let us then consider a possible key
combination (n*A, n*b, S’), where n is some number in GF16. The output of this new key pair
will be S/(nAx + nb) = S/(nv). Thanks to the properties of GF16, we know that n ∗ m, where
n is a GF16 value held constant and m is a GF16 value varied from 0 to 16, return all different
values ranging from 0 to 16. (Of course, the case where m = 0 maps to 0, but the other cases
map more interestingly.) Thus, multiplying v by n can be considered as just an extra permutation,
P(v). (This is true if n is nonzero, but we are simply choosing this to be the case.) This means we
can just adjust S’ to look like S after canceling out this original mapping, i.e S/(x) = S(P −1(x)),
and we have an equivalent key pair. Thus we have generated several equivalent key pairs. It turns
out that, since we have such freedom with S, we can actually generate even more equivalent key
pairs by basically generating new v’s and adjusting our S accordingly, as shown above. Thus, we
know that there will be many equivalent key pairs.

b) Let’s consider a series of possible inputs and outputs that we could try encrypting/decrypting,
and consider the information gleaned from each.

If we encrypt the vector x0 = [0, 0, 0, 0, ..., 0], we will get y0 = S(b). Additionally, if we encrypt the
vectors xi , which are the 16 unit vectors (i.e. the vectors with all 0’s except a 1 at position i), we u

iwill get back y = S(Ai + b), where Ai is the i’th column of A. u

We now have information about A and b, but they are embedded in S, the permutation. In order to
get information about this, we can decrypt the values yi = [i, 0, 0, 0, ...0]. Reversing our algorithm, v

i iwe can see that x = A−1(S−1(y) − b), which means we will get back x = (A−1)0(S−1(y) − b). If v v
iwe take the first element of these x , we will get (A−1)0,0(S−1(i)−b0), and if we take the differences v

0 idi = x − x , we will get (A−1)0,0(S−1(0) − S−1(i)). Here, we take advantage of the properties of v v

GF16 to define a new, valid permutation, S/ such that S/−1 = (A−1)0,0S−1, such that the values di

are actually differences between the inverse permutation values for 0 and i. Defining S’(0) = 0, we
thus have a valid permutation that we have fully defined, and which we can construct an equivalent
key pair using. (Recall from part a that we can do this because our permutation is correct up to a
multiplicative constant!).

Using this new S’, we can decrypt S(b) such that S/−1(S(b)) = b/, and similarly extract each column
of A as a column of a new matrix A’. This new key combination (A/, b/, S/) is equivalent to the orig
inal combination (A, b, S). Since we now have an equivalent key set to the original combination, we
can freely encrypt and decrypt data as we please, completely compromising the Kalns encryption
scheme.

c) We have successfully implemented this algorithm. See MCRBFinalFast on http://6857.scripts.
mit.edu/kalns/. Our code follows the exact process detailed in part b. The MITx submission site
only allows one uploaded file, so we did not submit our actual code file, but the code we used is
reproduced below using the verbatim tag.

from kalns import *

1

http://6857.scripts.mit.edu/kalns/
http://6857.scripts.mit.edu/kalns/

tokenString = remote_query(’keygen?team=MCRBFinalFast’)

theToken = tokenString[80:112]

rk = RemoteKalns(theToken)

b =	 int64_to_GF16_vec(rk.enc(0))

r_unit = []
for i in range(16):

r_unit.append(int64_to_GF16_vec(rk.enc(2**(4*(15-i)))))

A =	 []
for	 row in range(16):

A.append([])
for col in range(16):

A[row].append(r_unit[col][row])

iTimesAInv = []
for	 i in range(16):

#print int64_to_GF16_vec(i*(2**(4)))
iTimesAInv.append(int64_to_GF16_vec(rk.dec(i*(2**(4)))))

topVals = []
for i in range(16):

topVals.append(iTimesAInv[i][0])

#These for loops are actually irrelevant, they were
#originally to ensure that we didn’t need to try cyclic permutations of
#the S that we derived. It turns out we don’t, so we just set the ranges
#to 1.
for i in range(1):

for	 ii in range(1):

AA = []

BB = []

s = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sinv = []

for iii in range(16):

x = topVals[iii]

x0 = topVals[0]

s[int((GF16(i) - ((x0-x)/GF16(ii+1))).val)] = int(iii)

for	 ij in range(16):

sinv.append(s.index(ij))

for	 k in range(16):

AA.append([])

for l in range(16):

AA[k].append(GF16(sinv[A[k][l].val]))
BB.append(GF16(sinv[b[k].val]))

2

for	 kk in range(16):
for	 ll in range(16):

newVar = AA[kk][ll] - BB[kk]
AA[kk][ll] = newVar

print "s = " + str(i) + ", Ainv[0][0] = " + str(ii)
print rk.answer(AA, BB, s)

3

MIT OpenCourseWare
http://ocw.mit.edu

6.857 Network and Computer Security
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

