
Massachusetts Institute of Technology Handout 2
6.857: Network and Computer Security February 10, 2014
Professor Ron Rivest Due: February 24, 2014

Problem Set 1

This problem set is due on Monday, February 24 at 11:59 PM. Please note that no late submissions will be
accepted. Each problem should be in a separate PDF. Have one and only one group member submit
the finished problem set. Please title each PDF with the Kerberos of your group members as well as the
problem set number and problem number (i.e. kerberos1 kerberos2 kerberos3 pset1 problem1.pdf).

You are to work on this problem set with your assigned group of three or four people. Please see the
course website for a listing of groups for this problem set. Be sure that all group members can explain the

 solutions. See Handout 1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must appear on a separate page. Mark
the top of each page with your group member names, the course number (6.857), the problem set number
and question, and the date. We have provided templates for LATEX and Microsoft Word on the course website
(see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we will distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on the
homework submission website.

Problem 1-1. Security Policy for Github

Write a security policy for a distributed version control hosting site like Github. Make sure to define relevant
roles, functions, and policies. Your policy should be of the sort that would be usable to an implementor of
a clone of Github. For the purposes of this problem, assume that Github is the maintainer of Git.

If you can’t find relevant material on Github as currently implemented, invent new material as appropriate.
Try to be as complete as you can, but emphasize the Github-specific aspects—in particular, what security
goals are the most relevant for Github? What roles does (or, rather, should) Github have, and what should
each principal be allowed to do?

(This problem is a bit open-ended, but should give you excellent practice in writing a security policy. Also,
you may actually care about such security policies for designing systems used by large numbers of people—or
if you use Github yourself! We have included sample solutions from similar questions in previous years on
the course website.)

Problem 1-2. One-time pad with ciphertext feedback

It is well known that re-using a “one-time pad” can be insecure. This problem explores this issue, with some
variations.

In this problem all characters are represented as 8-bit bytes with the usual US-ASCII encoding (e.g.“A” is
encoded as 0x41). The bitwise exclusive-or of two bytes x and y is denoted x ⊕ y.

Let M = (m1,m2, . . . ,mn) be a message, consisting of a sequence of n message bytes, to be encrypted. Let
P = (p1, p2, . . . , pn) denote a pad, consisting of a coresponding sequence of (randomly chosen) “pad bytes”
(key bytes).

In the usual one-time pad, the sequence C = (c1, c2, . . . , cn) of ciphertext bytes is obtained by xor-ing each
message byte with the corresponding pad byte:

ci = mi ⊕ pi, for i = 1 . . . n .

2 6.857 : Handout 2: Problem Set 1

When we talk about more than one message, we will denote the messages as M1,M2, . . . ,Mk and the bytes
of message Mj as mji, namely Mj = (mj1, . . . ,mjn); we’ll also use similar notation for the corresponding
ciphertexts.

(a)	 Here are two 8-character English words encrypted with the same “one-time pad”. What are the
words?

e9 3a e9 c5 fc 73 55 d5
f4 3a fe c7 e1 68 4a df

Describe how you figured out the words.

(b) Ben Bitdiddle decided to fix this problem by making sure that you can’t just “cancel” pad bytes by
xor-ing the ciphertext bytes.
In his scheme the key is still as long as the ciphertext. If we define c0 = 0 for notational convenience,
then the ciphertext bytes c1, c2, . . . , cn are obtained as follows:

ci = mi ⊕ ((pi + ci−1) mod 256) .

That is, each ciphertext byte is added to the next key byte and the addition result (modulo 256) is
used to encrypt to the next plaintext byte.
Ben is now confident he can reuse his pad, since (ki + ci−1) mod 256 will be different for different
messages, so nobody would be able to cancel the ki’s out. You are provided with otp-feedback.py,
which contains an implementation of Ben’s algorithm.
You are also given the file tenciphs.txt, containing ten ciphertexts C1, C2, . . . , C10 produced by
Ben, using the same pad P . You know that these messages contain valid English text.
Submit the messages and the pad, along with a careful explanation of how you found them, and any
code you used to help find the messages. The most important part is the explanation.

Problem 1-3. Detecting Pad Reuse

In the previous problem, we saw how to attack a scheme in which a one-time pad, or a scheme like it, is
reused. This problem will walk you through how rare pad reuse for the standard one-time pad (not the
previous part’s scheme) can be efficiently detected. We will look at the extreme case in which a pad is reused
just once.

The following fact may be useful in this problem: Let Rp(n) be the longest run of heads in n coin flips, each of
which is heads with probability p. With high probability as n grows, Rp(n) is between log 1 n−log 1 ln ln n and

p p

log 1 n + log 1 ln n.
p p

Note: you are not responsible for this paper; it is provided as a reference only.

(a)	 Suppose you are given poly(n) n-bit ciphertexts c1, . . . , cl, each of which are properly encrypted with
an independently uniformly randomly chosen one-time pad. Show that with high probability, the
length of the longest repeated bitstring (i.e. a substring of both ci and cj for some i = j) is less than
log2 n + log2 ln n.

(b)	 We have collected data on the average length of the longest run of identical characters in identical
positions in passages of English text by randomly sampling from the collected works of American writer
Winston Churchill. You can find a graph of run length (in characters) versus log of the passage length
in characters at http://courses.csail.mit.edu/6.857/2014/files/run_lengths.png. How do
these run lengths compare to the previous part’s upper bound on the longest repeated bitstring if
English plaintext is US-ASCII encoded?

http://courses.csail.mit.edu/6.857/2014/files/run_lengths.png

3 6.857 : Handout 2: Problem Set 1

(c)	 Assume that each pair of plaintexts does share a long common run of identical characters, and any pair
of ciphertexts with independently chosen pads does not. Show that given poly(n) n-bit ciphertexts
with total length N and one instance of pad reuse, you can find the two ciphertexts which share a

˜key in time which is O(N) in the total ciphertext length. This means that your solution should run
in O(N logc N) time for some constant c.
Hint: You may wish to read about and use suffix trees in your solution. They are a type of tree which
store all of the suffixes of an n-character string, can be constructed in O(n log n) time and can be
used, among other things, to find a string’s longest repeated substring in linearithmic time by finding
the deepest non-leaf node. Note that longest repeated substring isn’t exactly what you need to solve
this problem. If you’re not familiar with suffix trees, you may or may not find suffix arrays simpler
and easier to understand.

MIT OpenCourseWare
http://ocw.mit.edu

6.857 Network and Computer Security
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

