
Massachusetts Institute of Technology Handout ??
6.857: Network and Computer Security March 31, 2014
Professor Ron Rivest Due: April 11, 2014

Problem Set 4

This problem set is due on Friday, April 11 at 11:59 PM. Please note that no late submissions will be
accepted.

Homework must be submitted electronically! Each problem answer must appear on a separate page. Mark
the top of each page with your group member names, the course number (6.857), the problem set number
and question, and the date. We have provided templates for LATEX and Microsoft Word on the course website
(see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we will distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on the
homework submission website.

Problem 4-1. Elliptic Curves
2Consider an elliptic curve y = x3 + 2x + 3 mod p, where p = 1012 + 39. A point P = (Px, Py) =

(60736832995, 733944796939) is a generator for this curve.

(a)	 Compute 2P .
(b)	 Compute P + Q, where Q = (339994762892, 473279195180).
(c)	 Compute 497P .
(d)	 What is the order of Q to the base P ? That is, determine a such that aP = Q.

Note: For this problem we require that you don’t use existing implementations of discrete logarithm
algorithms, but rather roll your own. You may use existing implementations of elliptic curve arith
metic, though.

Problem 4-2. The need for good randomness
In this problem we will explore how a good encryption scheme can become insecure, when the way of
generating random bits is not cryptographically strong.
We say that an encryption scheme (Gen, Enc, Dec) achieves computational indistinguishability for many
messages if no probabilistic polynomial time adversary can win in the following game with probability more
than negligibly greater than 1 .2

•Challenger first samples public and secret key pair (pk, sk) ← Gen and submits pk to the adversary;
0	 0 0 1 1 1•Adversary responds with two sequences of messages (m1,m2, . . . ,m) and (m1,m2, . . . ,m) (for kk	 k

chosen by the adversary);
•Challenger chooses a random bit b and returns to the adversary the encryptions (c1, c2, . . . , ck), where

bci = Enc(sk,m);i

•Adversary outputs a bit b' and wins if b = b'.

One can prove that El Gamal encryption scheme, where r used in encryption are chosen uniformly at random,
achieves computational indistinguishability for many messages.

You can work on this problem set with a group of three or four students of your choosing. Be sure that
 all group members can explain the solutions. See Handout 1 (Course Information) for our policy on
collaboration.

2 6.857 : Handout ??: Problem Set 4

(a)	 Usually (in practice), the r used for encryption is not generated completely at random, but by using
a pseudorandom generator. Again, in practice, people use simple “pseudorandom” generators such
as the linear congruential generator. A linear congruential generator LCG, given seed s0 outputs a
sequence (s1, s2, . . . , sn) such that si = asi−1 + b (mod |G|). Parameters a and b are assumed to be
public.
Show that if the r’s are generated using an LCG, then given two ciphertexts (of two messages),
one can establish a non-trivial relationship between them. Here r refers to randomness used during
encryption in the ElGamal scheme. More precisely, show that the ElGamal cryptosystem with LCG
does not achieve computational indistinguishability for many messages.
(“Lesson”: Beware of using unproven, patched-up pseudorandom generators).

(b) Finally, assume that the r’s are generated by a cryptographically strong pseudorandom generator.
Argue that ElGamal remains secure.
(In other words, show that if there is an adversary A that breaks the ElGamal that uses a crypto
graphically strong PRG, then there is an adversary B that breaks the original ElGamal — one where
r’s are generated randomly)

Problem 4-3. Changing RSA public keys
Bitdiddle Inc. requires every employee to have an RSA public key. It also requires that the employee change
his or her RSA key at the end of every month.

(a) Alice just started working at Bitdiddle, and her first public key is (n, e) where n is the product of two
safe primes, and e = 3.
Whenever a new month starts, Alice (being lazy) changes her public key as little as possible to get
by the auditors. What she does, in fact, is just to advance her public exponent e to the next prime
number. So, month by month, her public keys look like:

(n, 3), (n, 5), (n, 7), (n, 11), . . .

Explain how Alice’s laziness might get her in trouble.
(b)	 The next year, Alice tries a different scheme.

In January, she generates a fresh public key (n, e) where n is the product of two primes, p and q.
'	 ' In February, she advances p to the next prime p after p, and q to the next prime q after q, and sets

'	 ' her public key to be (n , e ') for a suitable e .
'	 '' ' Similarly, in March, she advances p to p and q to q '' , and so on.

Explain how Alice’s scheme could be broken.

MIT OpenCourseWare
http://ocw.mit.edu

6.857 Network and Computer Security
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

