Lexical Semantics

Regina Barzilay
MIT

October, 5766

Last Time: Vector-Based Similarity
 Measures

- Euclidian: $|\vec{x}, \vec{y}|=|\vec{x}-\vec{y}|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$
- Cosine: $\cos (\vec{x}, \vec{y})=\frac{\vec{x} * \vec{y}}{|\vec{x}||\vec{y}|}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}$

Last Time: Probabilistic Similarity Measures

(Pointwise) Mutual Information: $I(x ; y)=\log \frac{P(x, y)}{P(x) P(y)}$

- Mutual Information: $I(X ; Y)=E_{p(x, y)} \log \frac{p(X, Y)}{p(X) p(Y)}$

Example: Computing MI

$I\left(w_{1}, w_{2}\right)$	$C\left(w_{1}\right)$	$C\left(w_{2}\right)$	$C\left(w_{1}, w_{2}\right)$	w_{1}	w_{2}
16.31	30	117	20	Agatha	Christie
15.94	77	59	20	videocassette	recorder
15.19	24	320	20	unsalted	butter
1.09	14907	9017	20	first	made
0.29	15019	15629	20	time	last

Example: Computing MI

$I\left(w_{1}, w_{2}\right)$	$C\left(w_{1}\right)$	$C\left(w_{2}\right)$	$C\left(w_{1}, w_{2}\right)$	w_{1}	w_{2}
15.02	1	19	1	fewest	visits
12.00	5	31	1	Indonesian	pieces
9.21	13	82	20	marijuana	growing

Last Time: Probabilistic Similarity Measures

Kullback Leibler Distance: $D(p \| q)=\sum p(x) \log \frac{p(x)}{q(x)}$

- Closely related to mutual information

$$
I(X ; Y)=D(p(x, y) \| p(x) p(y))
$$

- Related measure : Jensen-Shannon divergence:

$$
D_{J S(p, q)}=\frac{1}{2} D\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} D\left(q \| \frac{p+q}{2}\right)
$$

Beyond Pairwise Similarity

- Clustering is "The art of finding groups in data"(Kaufmann and Rousseeu)
- Clustering algorithms divide a data set into homogeneous groups (clusters), based on their similarity under the given representation.

Hierarchical Clustering

Greedy, bottom-up version:

- Initialization: Create a separate cluster for each object
- Each iteration: Find two most similar clusters and merge them
- Termination: All the objects are in the same cluster

Agglomerative Clustering

$$
\begin{array}{lllll}
& \text { E } & \text { D } & \text { C } & \text { B } \\
\text { A } & 0.1 & 0.2 & 0.2 & 0.8 \\
& & & & \\
\text { B } & 0.1 & 0.1 & 0.2 & \\
& & & & \\
\text { C } & 0.0 & 0.7 & & \\
\text { D } & 0.6 & & &
\end{array}
$$

Agglomerative Clustering

	E	D	C	B
A	0.1	0.2	0.2	0.8
B	0.1	0.1	0.2	
C	0.0	0.7		
D	0.6			

Agglomerative Clustering

	E	D	C	B
A	0.1	0.2	0.2	0.8
B	0.1	0.1	0.2	
C	0.0	0.7		
D	0.6			

Clustering Function

$$
\begin{array}{lllll}
& \text { E } & \text { D } & \text { C } & \text { B } \\
\text { A } & 0.1 & 0.2 & 0.2 & 0.8 \\
& & & & \\
\text { B } & 0.1 & 0.1 & 0.2 & \\
& & & & \\
\text { C } & 0.0 & 0.7 & & \\
\text { D } & 0.6 & & &
\end{array}
$$

Clustering Function

$$
\begin{array}{lllll}
& \text { E } & \text { D } & \text { C } & \text { B } \\
\text { A } & 0.1 & 0.2 & 0.2 & 0.8 \\
& & & & \\
\text { B } & 0.1 & 0.1 & 0.2 & \\
& & & & \\
\text { C } & 0.0 & 0.7 & & \\
\text { D } & 0.6 & & &
\end{array}
$$

Clustering Function

$$
\begin{array}{lllll}
& \text { E } & \text { D } & \text { C } & \text { B } \\
\text { A } & 0.1 & 0.2 & 0.2 & 0.8 \\
& & & & \\
\text { B } & 0.1 & 0.1 & 0.2 & \\
& & & & \\
\text { C } & 0.0 & 0.7 & & \\
\text { D } & 0.6 & & &
\end{array}
$$

Clustering Function

- Single-link: Similarity of two most similar members
- Complete-link: Similarity of two least similar members
- Group-average: Average similarity between members

Single-Link Clustering

- Achieves Local Coherence
- Complexity $O\left(n^{2}\right)$
- Fails when clusters are not well separated

Complete-Link Clustering

- Achieves Global Coherence
- Complexity $O\left(n^{2} \log n\right)$
- Fails when clusters aren't spherical, or of uniform size

K-Means Algorithm: Example

Iterative, hard, flat clustering algorithm based on
Euclidean distance

K-Means Algorithm

1. Choose k points at random as cluster centers
2. Assign each instance to its closest cluster center
3. Calculate the centroid (mean) for each cluster, use it as a new cluster center
4. Iterate steps 2 and 3 until the cluster centers don't change anymore

K-Means Algorithm: Hard EM

1. Guess initial parameters
2. Use model to make the best guess of c_{i} (E-step)
3. Use the new complete data to learn better model (M-step)
4. Iterate (2-3) until convergence

Evaluating Clustering Methods

- Perform task-based evaluation
- Test the resulting clusters intuitively, i.e., inspect them and see if they make sense. Not advisable.
- Have an expert generate clusters manually, and test the automatically generated ones against them.
- Test the clusters against a predefined classification if there is one

Comparing Clustering Methods

(Meila, 2002)
$n \quad$ total \# of points
$n_{k} \quad$ \# of points in cluster C_{k}
K \# of nonempty clusters
N_{11} \# of pairs that are in the same cluster under C and C^{\prime}
$N_{00} \quad \#$ of pairs that are in different clusters under C and C^{\prime}
$N_{10} \quad \#$ of pairs that are in the same cluster under C but not C^{\prime}
N_{01} \# of pairs that are in the same cluster under C^{\prime} but not C

Comparing by Counting Pairs

- Wallace criteria

$$
\begin{aligned}
W_{1}\left(C, C^{\prime}\right) & =\frac{N_{11}}{\sum_{k} n_{k}\left(n_{k}-1\right) / 2} \\
W_{2}\left(C, C^{\prime}\right) & =\frac{N_{11}}{\sum_{k^{\prime}} n_{k^{\prime}}\left(n^{\prime}{ }_{k^{\prime}}-1\right) / 2}
\end{aligned}
$$

- Fowles-Mallows criterion

$$
F\left(C, C^{\prime}\right)=\sqrt{W_{1}\left(C, C^{\prime}\right) W_{2}\left(C, C^{\prime}\right)}
$$

Problems: ?

Comparing Clustering by Set Matching

Contingency table M is a $K \times K$ matrix, whose $k k^{\prime}$ element is the number of points in the intersection of clusters C_{k} and $C_{k^{\prime}}^{\prime}$

$$
L\left(C, C^{\prime}\right)=\frac{1}{K} \sum_{k} \max _{k^{\prime}} \frac{2 m_{k k^{\prime}}}{n_{k}+n_{k}^{\prime}}
$$

Problems: ?

Comparing Clustering by Set Matching

Distributional Syntax

Sequences of word clusters and their contexts (Klein, 2005)

Tag	Top Context by Frequency
DT	(IN-NN), (IN-JJ), (IN-NNP), (VB-NN)
JJ	(DT-NN), (IN-NNS), (IN-NN), (JJ-NN),(DT-NNS)
MD	(NN-VB), (PRP-VB), (NNS-VB), (NNP-VB), (WDT-VB)
NN	(DT-IN), (JJ-IN), (DT-NN), (NN-IN), (NN-.)
VB	(TO-DT), (TO-IN), (MD-DT), (MD-VBN),(TO-JJ)

Distributional Syntax

The most similar POS pairs and POS sequence pairs based on $D_{J S}$ of their context

Rank	Tag pairs	Sequence Pairs
1	(VBZ,VBD)	(NNP NNP, NNP NNP NNP)
2	(DT,PRP\$)	(DT JJ NN IN, DT NN IN)
3	(NN,NNS)	(NNP NNP NNP NNP, NNP NNP NNP)
4	(WDT,WP)	(DT NNP NNP, DT NNP)
5	(VBG,VBN)	(IN DT JJ NN, IN DT NN)
14	(JJS, JJR)	(NN IN DT, NN DT)

Linear vs. Hierarchical Context

The left (right) context of x is the left(right) sibling of the lowest ancestor of x

Rank	Linear	Hierarchical
1	(NN NNS, JJ NNS)	(NN NNS, JJ NNS)
2	(IN NN, IN DT NN)	(IN NN, IN DT NN)
3	(DT JJ NN, DT NN)	(IN DT JJ NN, IN JJ NNS)
4	(DT JJ NN, DT NN NN)	(VBZ VBN, VBD VBN)
5	(IN DT JJ NN, IN DT NN)	(NN NNS, JJ NN NNS)

Grammar Induction

- Task: Unsupervised learning of a language's syntax from a corpus of observed sentences

The cat stalked the mouse.
The mouse quivered.
The cat smiled.

- A tree induction system is not forced to learn all aspects of language (semantics, discourse)

Motivation

- Linguistic motivation:
- Empirical argument against the poverty of the stimulus (Chomsky, 1965)
- Empirical investigation of syntax modularity (Fodor, 1983; Jackendoff, 1996)
- Engineering motivation:
- No need in training data

Evaluation and Baselines

- Evaluation:
- Compare grammars
- Compare trees
- Baselines:
- Random Trees
- Left- and Right-Branching Trees

Structure Search Experiment

- Structure search
- Add production to context free grammar
- Select HMM topology
- Parameter search
- Determine parameters for a fixed PCFG

Finding Topology

Stolcke\&Omohundro, 1994: Bayesian model merging

- Data incorporation: Given a body of data X, build an initial model M_{0} by explicitly accommodating each data point individually such that M_{0} maximizes the likelihood $P(X \mid M)$.
- Generalization: Build a sequence of new models, obtaining M_{i+1} from M_{i} by applying a merging operator m that coalesces substructures in M_{i}, $M_{i+1}=m\left(M_{i}\right), i=0,1$
- Optimization: Maximize posterior probability
- Search strategy: Greedy or beam search through the space of possible merges

HMM Topology Induction

- Data incorporation: For each observed sample create a unique path between the initial and final states by assigning a new state to each symbol token in the sample
- Generalization: Two HMM states are replaced by a single new state, which inherits the union of the transitions and emissions from the old states.

HMM Topology Induction

- Prior distribution: Choose uninformative priors for a model M with topology M_{s} and parameters θ_{M}.

$$
\begin{gathered}
P(M)=P\left(M_{s}\right) P\left(\theta_{M} \mid M_{s}\right) \\
P\left(M_{s}\right) \propto \exp \left(-l\left(M_{s}\right)\right)
\end{gathered}
$$

where $l\left(M_{s}\right)$ is the number of bits required to encode M_{s}.

- Search: Greedy merging strategy.

Example

PCFG Induction

- Data Incorporation: Add a top-level production that covers the sample precisely. Create one nonterminal for each observed terminal.
- Merging and Chunking: During merging, two nonterminals are replaced by a single new state. Chunking takes a given sequence of nonterminals and abbreviates it using a newly created nonterminal.
- Prior distribution: Similar to HMM.
- Search: Beam search.

Example

Input: \{ab,aabb,aaabbb\}

Chunk(AB)-> ${ }^{\text {X }}$	
Chunk(AXB)->Y	$\begin{aligned} S & \rightarrow X \\ & \rightarrow Y \\ & \rightarrow \text { A Y B } \\ X & \rightarrow \text { A B } \\ Y & \rightarrow \text { A X B } \end{aligned}$
Merge S, Y	$\begin{aligned} & S \xrightarrow{S \rightarrow X} \\ & \quad \text {-> A S B } \\ & \text { X A B } \end{aligned}$
Merge S,X	

Results for PCFGS

- Formal language experiments
- Successfully learned simple grammars

Language	Sample no.	Grammar	Search
Parentheses	8	$S \rightarrow()\|(S)\| S S$	BF
$a^{2 n}$	5	$S \rightarrow a a \mid S S$	BF
$(a b)^{n}$	5	$S \rightarrow a b \mid a S b$	BF
$w c w^{R}, w \in\{a, b\}^{\star}$	7	$S \rightarrow c\|a S a\| b S b$	BS (3)
Addition strings	23	$S \rightarrow a\|b\|(S) \mid S+S$	BS(4)

- Natural Language syntax
- Mixed results (issues related to data sparseness)

Example of Learned Grammar

Target Grammar	Learned Grammar	
$S \rightarrow N P V P$	$S \rightarrow N P V P$	
$V P \rightarrow V e r b N P$	$V P \rightarrow V N P$	
$N P \rightarrow D e t N o u n$	$N P \rightarrow D e t N$	
$N P \rightarrow D e t N o u n R C$	$N P \rightarrow N P R C$	
$R C \rightarrow$ RelVP	$R C \rightarrow R E L V P$	
Verb \rightarrow saw\|heard	$V \rightarrow$ saw\|heard	
Noun \rightarrow cat \mid dog\|mouse	$N \rightarrow$ cat\|dog	mouse
Det $\rightarrow a \mid t h e$	$D e t \rightarrow a \mid t h e$	
$R e l \rightarrow t h a t$	$R e l \rightarrow t h a t$	

Example

Input: \{ab,aabb,aaabbb\}

Chunk(AB)-> ${ }^{\text {X }}$	
Chunk(AXB)->Y	$\begin{aligned} S & \rightarrow X \\ & \rightarrow Y \\ & \rightarrow \text { A Y B } \\ X & \rightarrow \text { A B } \\ Y & \rightarrow \text { A X B } \end{aligned}$
Merge S, Y	$\begin{aligned} & S \xrightarrow{S \rightarrow X} \\ & \quad \text {-> A S B } \\ & \text { X A B } \end{aligned}$
Merge S,X	

Issue with Chunk/Merge Systems

- Hard to recover from initial choices
- Hard to make local decision which will interact with each other (e.g., group verb preposition and preposition-determiner, both wrong and non consistent)
- Good local heuristics often don't have well formed objectives that can be evaluated for the target grammar

Learn PCFGs with EM

- (Lari\&Young 1990): Learning PCFGs with EM
- Full binary grammar over n symbols
- Parse randomly at first
- Re-estimate rule probabilities of parses
- Repeat

Grammar Format

- Lari\&Young, 1990: Satisfactory grammar learning requires more nonterminals than are theoretically needed to describe a language at hand
- There is no guarantee that the nonterminals that the algorithm learns will have any resemblance to nonterminals motivated in linguistic analysis
- Constraints on the grammar format may simplify the reestimation procedure
- Carroll\&Charniak, 1992: Specify constraints on non-terminals that may appear together on the right-hand side of the rule

Partially Unsupervised Learning

Pereira\&Schabes 1992

- Idea: Encourage the probabilities into a good region of the parameter space
- Implementation: modify Inside-Outside algorithm to consider only parses that do not cross provided bracketing
- Experiments: 15 non terminals over 45 POS tags The algorithm uses Treebank bracketing, but ignores the labels
- Evaluation Measure: fraction of nodes in gold trees correctly posited in proposed trees (unlabeled recall)
- Results:
- Constrained and unconstrained grammars have similar cross-entropy
- But very different bracketing accuracy: 37\% vs. 90%

Current Performance

- Constituency recall:

Random Baseline	39.4
Klein'2005	88.0
Supervised PCFG	92.8

- Why it works?
- Combination of simple models
- Representations designed for unsupervised learning

