6.864: Lecture 10 (October 13th, 2005) Tagging and History-Based Models

Overview

- The Tagging Problem
- Hidden Markov Model (HMM) taggers
- Log-linear taggers
- Log-linear models for parsing and other problems

Tagging Problems

- Mapping strings to Tagged Sequences
abee afhj \Rightarrow a/C b/De/Ce/C a/Df/Ch/D j/C

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N	$=$ Noun
V	$=$ Verb
P	$=$ Preposition
Adv	$=$ Adverb
Adj	$=$ Adjective

Information Extraction

Named Entity Recognition

INPUT: Profi ts soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced fi rst quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location

Extracting Glossary Entries from the Web

Input:

Images removed for copyright reasons.
Set of webpages from The Weather Channel (http://www.weather.com), including a multi-entry 'Weather Glossary' page.

Output:

Text removed for copyright reasons.
The glossary entry for 'St. Elmo's Fire.'

Our Goal

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
$2 \mathrm{Mr} . / \mathrm{NNP}$ Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

- From the training set, induce a function or "program" that maps new sentences to their tag sequences.

Our Goal (continued)

- A test data sentence:

Influential members of the House Ways and Means Committee introduced legislation that would restrict how the new savings-and-loan bailout agency can raise capital, creating another potential obstacle to the government 's sale of sick thrifts .

- Should be mapped to underlying tags:

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ,/, creating/VBG another/DT potential/JJ obstacle/NN to/TO the/DT government/NN 's/POS sale/NN of/IN sick/JJ thrifts/NNS ./.

- Our goal is to minimize the number of tagging errors on sentences not seen in the training set

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- "Local": e.g., can is more likely to be a modal verb MD rather than a noun NN
- "Contextual": e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in confict:

The trash can is in the garage

A Naive Approach

- Use a machine learning method to build a "classifier" that maps each word individually to its tag
- A problem: does not take contextual constraints into account

Hidden Markov Models

- We have an input sentence $S=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)
- We have a tag sequence $T=t_{1}, t_{2}, \ldots, t_{n}$ (t_{i} is the i 'th tag in the sentence)
- We'll use an HMM to define

$$
P\left(t_{1}, t_{2}, \ldots, t_{n}, w_{1}, w_{2}, \ldots, w_{n}\right)
$$

for any sentence S and tag sequence T of the same length.

- Then the most likely tag sequence for S is

$$
T^{*}=\operatorname{argmax}_{T} P(T, S)
$$

How to model $P(T, S)$?

A Trigram HMM Tagger:

$$
\begin{aligned}
& P(T, S)=P\left(\mathrm{END} \mid t_{1} \ldots t_{n}, w_{1} \ldots w_{n}\right) \times \\
& \quad \prod_{j=1}^{n}\left[P\left(t_{j} \mid w_{1} \ldots w_{j-1}, t_{1} \ldots t_{j-1}\right) \times\right. \\
& \left.\quad P\left(w_{j} \mid w_{1} \ldots w_{j-1}, t_{1} \ldots t_{j}\right)\right] \quad \text { Chain rule } \\
& =P\left(\mathrm{END} \mid t_{n-1}, t_{n}\right) \times \\
& \prod_{j=1}^{n}\left[P\left(t_{j} \mid t_{j-2}, t_{j-1}\right) \times P\left(w_{j} \mid t_{j}\right)\right] \quad \text { Independence assumptions }
\end{aligned}
$$

- END is a special tag that terminates the sequence
- We take $t_{0}=t_{-1}=$ START
- 1st assumption: each tag only depends on previous two tags $P\left(t_{j} \mid t_{j-1}, t_{j-2}\right)$
- 2nd assumption: each word only depends on underlying tag $P\left(w_{j} \mid t_{j}\right)$

An Example

- $S=$ the boy laughed
- $T=$ DT NN VBD

$$
\begin{aligned}
P(T, S)= & P(\text { END } \mid \text { NN, VBD }) \times \\
& P(\mathrm{DT} \mid \text { START, START }) \times \\
& P(\text { NN } \mid \text { START, DT }) \times \\
& P(\text { VBD } \mid \mathrm{DT}, \mathrm{NN}) \times \\
& P(\text { the } \mid \mathrm{DT}) \times \\
& P(\text { boy } \mid \text { NN }) \times \\
& P(\text { laughed } \mid \mathrm{VBD})
\end{aligned}
$$

Why the Name?

$$
P(T, S)=\underbrace{P\left(\mathbf{E N D} \mid t_{n-1}, t_{n}\right) \prod_{j=1}^{n} P\left(t_{j} \mid t_{j-2}, t_{j-1}\right)}_{\text {Hidden Markov Chain }} \times \underbrace{\prod_{j=1}^{n} P\left(w_{j} \mid t_{j}\right)}_{w_{j} \text { 's are observed }}
$$

How to model $P(T, S)$?

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/Vt from which Spain expanded its empire into the rest of the Western Hemisphere .
"Score" for tag $V t$:

$$
P(\mathrm{Vt} \mid \mathrm{DT}, \mathrm{JJ}) \times P(\text { base } \mid \mathrm{Vt})
$$

Smoothed Estimation

$$
\begin{aligned}
P(\mathrm{Vt} \mid \mathrm{DT}, \mathrm{JJ})= & \lambda_{1} \times \frac{\operatorname{Count}(\mathrm{Dt}, \mathrm{JJ}, \mathrm{Vt})}{\operatorname{Count}(\mathrm{Dt}, \mathrm{JJ})} \\
& +\lambda_{2} \times \frac{\operatorname{Count}(\mathrm{JJ}, \mathrm{Vt})}{\operatorname{Count}(\mathrm{JJ})} \\
& +\lambda_{3} \times \frac{\operatorname{Count}(\mathrm{Vt})}{\operatorname{Count}()}
\end{aligned}
$$

$$
P(\text { base } \mid \mathrm{Vt})=\frac{\operatorname{Count}(\mathrm{Vt}, \text { base })}{\operatorname{Count}(\mathrm{Vt})}
$$

Dealing with Low-Frequency Words

- Step 1: Split vocabulary into two sets

Frequent words $\quad=$ words occurring ≥ 5 times in training Low frequency words $=$ all other words

- Step 2: Map low frequency words into a small, finite set, depending on prefixes, suffixes etc.

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] An Algorithm that Learns What's in a Name

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	$09-96$	Date
containsDigitAndSlash	$11 / 9 / 89$	Date
containsDigitAndComma	$23,000.00$	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount,percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Dealing with Low-Frequency Words: An Example

Profi ts/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA fi rst/NA quarter/NA results/NA ./NA
\Downarrow
firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location

The Viterbi Algorithm

- Question: how do we calculate the following?:

$$
T^{*}=\operatorname{argmax}_{T} \log P(T, S)
$$

- Define n to be the length of the sentence
- Define a dynamic programming table
$\pi\left[i, t_{-2}, t_{-1}\right]=$ maximum log probability of a tag sequence ending in tags t_{-2}, t_{-1} at position i
- Our goal is to calculate $\max _{t_{-2}, t_{-1} \in \mathcal{T}} \pi\left[n, t_{-2}, t_{-1}\right]$

The Viterbi Algorithm: Recursive Definitions

- Base case:

$$
\begin{aligned}
\pi[0, *, *] & =\log 1=0 \\
\pi\left[0, t_{-2}, t_{-1}\right] & =\log 0=-\infty \text { for all other } t_{-2}, t_{-1}
\end{aligned}
$$

here $*$ is a special tag padding the beginning of the sentence.

- Recursive case: for $i=1 \ldots n$, for all t_{-2}, t_{-1},

$$
\pi\left[i, t_{-2}, t_{-1}\right]=\max _{t \in \mathcal{T} \cup\{*\}}\left\{\pi\left[i-1, t, t_{-2}\right]+\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)\right\}
$$

Backpointers allow us to recover the max probability sequence:

$$
\mathrm{BP}\left[i, t_{-2}, t_{-1}\right]=\operatorname{argmax}_{t \in \mathcal{T} \cup\{*\}}\left\{\pi\left[i-1, t, t_{-2}\right]+\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)\right\}
$$

Where $\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)=\log P\left(t_{-1} \mid t, t_{-2}\right)+\log P\left(w_{i} \mid t_{-1}\right)$
Complexity is $O\left(n k^{3}\right)$, where $n=$ length of sentence, k is number of possible tags

The Viterbi Algorithm: Running Time

- $O\left(n|\mathcal{T}|^{3}\right)$ time to calculate $\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)$ for all i, t, t_{-2}, t_{-1}.
- $n|\mathcal{T}|^{2}$ entries in π to be filled in.
- $O(\mathcal{T})$ time to fill in one entry (assuming $O(1)$ time to look up $\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)$)
- $\Rightarrow O\left(n|\mathcal{T}|^{3}\right)$ time

Pros and Cons

- Hidden markov model taggers are very simple to train (compile counts from the training corpus)
- Perform relatively well (over 90% performance on named entities)
- Main difficulty is modeling

$$
P(\text { word } \mid \text { tag })
$$

can be very difficult if "words" are complex

Log-Linear Models

- We have an input sentence $S=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)
- We have a tag sequence $T=t_{1}, t_{2}, \ldots, t_{n}$ (t_{i} is the i 'th tag in the sentence)
- We'll use an log-linear model to define

$$
P\left(t_{1}, t_{2}, \ldots, t_{n} \mid w_{1}, w_{2}, \ldots, w_{n}\right)
$$

for any sentence S and tag sequence T of the same length.
(Note: contrast with HMM that defines
$\left.P\left(t_{1}, t_{2}, \ldots, t_{n}, w_{1}, w_{2}, \ldots, w_{n}\right)\right)$

- Then the most likely tag sequence for S is

$$
T^{*}=\operatorname{argmax}_{T} P(T \mid S)
$$

How to model $P(T \mid S)$?

A Trigram Log-Linear Tagger:

$$
\begin{aligned}
& P(T \mid S)= \prod_{j=1}^{n} P\left(t_{j} \mid w_{1} \ldots w_{n}, t_{1} \ldots t_{j-1}\right) \quad \text { Chain rule } \\
&= \prod_{j=1}^{n} P\left(t_{j} \mid t_{j-2}, t_{j-1}, w_{1}, \ldots, w_{n}\right) \\
& \quad \text { Independence assumptions }
\end{aligned}
$$

- We take $t_{0}=t_{-1}=$ START
- Assumption: each tag only depends on previous two tags $P\left(t_{j} \mid t_{j-1}, t_{j-2}, w_{1}, \ldots, w_{n}\right)$

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- There are many possible tags in the position ??
$\mathcal{Y}=\{\mathrm{NN}, \mathrm{NNS}, \mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots\}$
- The input domain \mathcal{X} is the set of all possible histories (or contexts)
- Need to learn a function from (history, tag) pairs to a probability $P($ tag \mid history $)$

Representation: Histories

- A history is a 4-tuple $\left\langle t_{-1}, t_{-2}, w_{[1: n]}, i\right\rangle$
- t_{-1}, t_{-2} are the previous two tags.
- $w_{[1: n]}$ are the n words in the input sentence.
- i is the index of the word being tagged
- \mathcal{X} is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- $t_{-1}, t_{-2}=\mathrm{DT}, \mathrm{JJ}$
- $w_{[1: n]}=\langle$ Hispaniola,quickly, became,\ldots, Hemisphere,.\rangle
- $i=6$

Feature Vector Representations

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $P(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $f: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}$).
- Say we have m features ϕ_{k} for $k=1 \ldots m$ \Rightarrow A feature vector $\phi(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.

An Example (continued)

- \mathcal{X} is the set of all possible histories of form $\left\langle t_{-1}, t_{-2}, w_{[1: n]}, i\right\rangle$
- $\mathcal{Y}=\{\mathrm{NN}, \mathrm{NNS}, \mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots\}$
- We have m features $\phi_{k}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ for $k=1 \ldots m$

For example:
$\phi_{1}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } t=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}$
$\phi_{2}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } t=\text { VBG } \\ 0 & \text { otherwise }\end{cases}$
$\phi_{1}(\langle\mathrm{JJ}, \mathrm{DT},\langle$ Hispaniola, ... $\rangle, 6\rangle, \mathrm{Vt})=1$
$\phi_{2}(\langle\mathrm{JJ}, \mathrm{DT},\langle$ Hispaniola, ... $\rangle, 6\rangle, \mathrm{Vt})=0$

The Full Set of Features in [(Ratnaparkhi, 96)]

- Word/tag features for all word/tag pairs, e.g.,

$$
\phi_{100}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } t=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

$$
\begin{aligned}
& \phi_{101}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } t=\text { VBG } \\
0 & \text { otherwise }\end{cases} \\
& \phi_{102}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { starts with pre and } t=\mathrm{NN} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in [(Ratnaparkhi, 96)]

- Contextual Features, e.g.,

$$
\begin{aligned}
& \phi_{103}(h, t)= \begin{cases}1 & \text { if }\left\langle t_{-2}, t_{-1}, t\right\rangle=\langle\mathrm{DT}, \mathrm{JJ}, \mathrm{Vt}\rangle \\
0 & \text { otherwise }\end{cases} \\
& \phi_{104}(h, t)= \begin{cases}1 & \text { if }\left\langle t_{-1}, t\right\rangle=\langle\mathrm{JJ}, \mathrm{Vt}\rangle \\
0 & \text { otherwise }\end{cases} \\
& \phi_{105}(h, t)
\end{aligned}=\left\{\begin{array}{ll}
1 & \text { if }\langle t\rangle=\langle\mathrm{Vt}\rangle \\
0 & \text { otherwise }
\end{array}\right\} \begin{array}{ll}
1 & \text { if previous word } w_{i-1}=\text { the } \text { and } t=\mathrm{Vt} \\
\phi_{106}(h, t) & = \begin{cases}0 & \text { otherwise }\end{cases} \\
\phi_{107}(h, t) & = \begin{cases}1 & \text { if next word } w_{i+1}=\text { the and } t=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

The Final Result

- We can come up with practically any questions (features) regarding history/tag pairs.
- For a given history $x \in \mathcal{X}$, each label in \mathcal{Y} is mapped to a different feature vector

$$
\begin{aligned}
\phi(\langle\mathrm{JJ}, \mathrm{DT},\langle\text { Hispaniola, ... }\rangle, 6\rangle, \mathrm{Vt}) & =1001011001001100110 \\
\phi(\langle\mathrm{JJ}, \mathrm{DT},\langle\text { Hispaniola, ... }\rangle, 6\rangle, \mathrm{JJ}) & =0110010101011110010 \\
\phi(\langle\mathrm{JJ}, \mathrm{DT},\langle\text { Hispaniola, ... }\rangle, 6\rangle, \mathrm{NN}) & =0001111101001100100 \\
\phi(\langle\mathrm{JJ}, \mathrm{DT},\langle\text { Hispaniola, ... }\rangle, 6\rangle, \mathrm{IN}) & =0001011011000000010
\end{aligned}
$$

Log-Linear Models

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $P(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $f: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}$).
- Say we have m features ϕ_{k} for $k=1 \ldots m$
$\Rightarrow \mathrm{A}$ feature vector $\phi(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- We also have a parameter vector $\mathbf{W} \in \mathbb{R}^{m}$
- We define

$$
P(y \mid x, \mathbf{W})=\frac{e^{\mathbf{W} \cdot \phi(x, y)}}{\sum_{y^{\prime} \in \mathcal{Y}} e^{\mathbf{W} \cdot \phi\left(x, y^{\prime}\right)}}
$$

Training the Log-Linear Model

- To train a log-linear model, we need a training set $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$. Then search for

$$
\mathbf{W}^{*}=\operatorname{argmax}_{\mathbf{W}}(\underbrace{\sum_{i} \log P\left(y_{i} \mid x_{i}, \mathbf{W}\right)}_{\text {Log-Likelihood }}-\underbrace{C \sum_{k} \mathbf{W}_{k}^{2}}_{\text {Gaussian Prior }})
$$

(see last lecture on log-linear models)

- Training set is simply all history/tag pairs seen in the training data

The Viterbi Algorithm for Log-Linear Models

- Question: how do we calculate the following?:

$$
T^{*}=\operatorname{argmax}_{T} \log P(T \mid S)
$$

- Define n to be the length of the sentence
- Define a dynamic programming table
$\pi\left[i, t_{-2}, t_{-1}\right]=$ maximum log probability of a tag sequence ending in tags t_{-2}, t_{-1} at position i
- Our goal is to calculate $\max _{t_{-2}, t_{-1} \in \mathcal{T}} \pi\left[n, t_{-2}, t_{-1}\right]$

The Viterbi Algorithm: Recursive Definitions

- Base case:

$$
\begin{aligned}
\pi[0, *, *] & =\log 1=0 \\
\pi\left[0, t_{-2}, t_{-1}\right] & =\log 0=-\infty \text { for all other } t_{-2}, t_{-1}
\end{aligned}
$$

here $*$ is a special tag padding the beginning of the sentence.

- Recursive case: for $i=1 \ldots n$, for all t_{-2}, t_{-1},

$$
\pi\left[i, t_{-2}, t_{-1}\right]=\max _{t \in \mathcal{T} \cup\{*\}}\left\{\pi\left[i-1, t, t_{-2}\right]+\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)\right\}
$$

Backpointers allow us to recover the max probability sequence:

$$
\mathrm{BP}\left[i, t_{-2}, t_{-1}\right]=\operatorname{argmax}_{t \in \mathcal{T} \cup\{*\}}\left\{\pi\left[i-1, t, t_{-2}\right]+\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)\right\}
$$

Where $\operatorname{Score}\left(S, i, t, t_{-2}, t_{-1}\right)=\log P\left(t_{-1} \mid t, t_{-2}, w_{1}, \ldots, w_{n}, i\right)$
Identical to Viterbi for HMMs, except for the definition of $S \operatorname{core}\left(S, i, t, t_{-2}, t_{-1}\right)$

FAQ Segmentation: McCallum et. al

- McCallum et. al compared HMM and log-linear taggers on a FAQ Segmentation task
- Main point: in an HMM, modeling

$$
P(\text { word } \mid t a g)
$$

is difficult in this domain

FAQ Segmentation: McCallum et. al

```
    <head>X-NNTP-POSTER: NewsHound v1.33
    <head>
    <head>Archive name: acorn/faq/part2
    <head>Frequency: monthly
    <head>
<question>2.6) What configuration of serial cable should I use
    <answer>
    <answer> Here follows a diagram of the necessary connections
    <answer>programs to work properly. They are as far as I know t
    <answer>agreed upon by commercial comms software developers fo
    <answer>
    <answer> Pins 1, 4, and 8 must be connected together inside
    <answer>is to avoid the well known serial port chip bugs. The
```


FAQ Segmentation: Line Features

```
begins-with-number
begins-with-ordinal
begins-with-punctuation
begins-with-question-word
begins-with-subject
blank
contains-alphanum
contains-bracketed-number
contains-http
contains-non-space
contains-number
contains-pipe
contains-question-mark
ends-with-question-mark
first-alpha-is-capitalized
indented-1-to-4
indented-5-to-10
more-than-one-third-space
only-punctuation
prev-is-blank
prev-begins-with-ordinal
shorter-than-30
```


FAQ Segmentation: The Log-Linear Tagger

```
<head>X-NNTP-POSTER: NewsHound v1.33
<head>
<head>Archive name: acorn/faq/part2
<head>Frequency: monthly
<head>
<question>2.6) What configuration of serial cable should I use
```

Here follows a diagram of the necessary connections programs to work properly. They are as far as I know t agreed upon by commercial comms software developers fo

Pins 1, 4, and 8 must be connected together inside is to avoid the well known serial port chip bugs. The
\Rightarrow "tag=question;prev=head;begins-with-number"
"tag=question;prev=head;contains-alphanum"
"tag=question;prev=head;contains-nonspace"
"tag=question;prev=head;contains-number"
"tag=question;prev=head;prev-is-blank"

FAQ Segmentation: An HMM Tagger

<question>2.6) What configuration of serial cable should I use

- First solution for $P($ word \mid tag $)$:
$P\left({ }^{2.6}\right)$ What confi guration of serial cable should I use" \mid question $)=$ $P(2.6) \mid$ question $) \times$
$P($ What \mid question $) \times$
$P($ configuration \mid question $) \times$
$P(o f \mid$ question $) \times$
$P($ serial \mid question $) \times$
- i.e. have a language model for each tag

FAQ Segmentation: McCallum et. al

- Second solution: first map each sentence to string of features:

```
<question>2.6) What configuration of serial cable should I use
#
```

<question>begins-with number contains-alphanum contains-nonspace

- Use a language model again:
$P($ '2.6) What confi guration of serial cable should I use" \mid question $)=$
P (begins-with-number | question) \times
$P($ contains-alphanum | question $) \times$
$P($ contains-nonspace \mid question $) \times$
$P($ contains-number | question $) \times$
$P($ prev-is-blank | question $) \times$

FAQ Segmentation: Results

Method	COAP	SegPrec	SegRec
ME-Stateless	0.520	0.038	0.362
TokenHMM	0.865	0.276	0.140
FeatureHMM	0.941	0.413	0.529
MEMM	0.965	0.867	0.681

Overview

- The Tagging Problem
- Hidden Markov Model (HMM) taggers
- Log-linear taggers
- Log-linear models for parsing and other problems

Log-Linear Taggers: Summary

- The input sentence is $S=w_{1} \ldots w_{n}$
- Each tag sequence T has a conditional probability

$$
\begin{array}{rlrl}
P(T \mid S) & =\prod_{j=1}^{n} P\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{1} \ldots t_{j-1}\right) & & \text { Chain rule } \\
& =\prod_{j=1}^{n} P\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{j-2}, t_{j-1}\right) & & \text { Independence } \\
\text { assumptions }
\end{array}
$$

- Estimate $P\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{j-2}, t_{j-1}\right)$ using log-linear models
- Use the Viterbi algorithm to compute

$$
\operatorname{argmax}_{T \in \mathcal{T}^{n}} \log P(T \mid S)
$$

A General Approach: (Conditional) History-Based Models

- We've shown how to define $P(T \mid S)$ where T is a tag sequence
- How do we define $P(T \mid S)$ if T is a parse tree (or another structure)?

A General Approach: (Conditional) History-Based Models

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

m is not necessarily the length of the sentence

- Step 2: the probability of a tree is

$$
P(T \mid S)=\prod_{i=1}^{m} P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 3: Use a log-linear model to estimate

$$
P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 4: Search?? (answer we'll get to later: beam or heuristic search)

An Example Tree

Ratnaparkhi's Parser: Three Layers of Structure

1. Part-of-speech tags
2. Chunks
3. Remaining structure

Layer 1: Part-of-Speech Tags

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

- First n decisions are tagging decisions

$$
\left\langle d_{1} \ldots d_{n}\right\rangle=\langle\mathrm{DT}, \mathrm{NN}, \mathrm{Vt}, \mathrm{DT}, \mathrm{NN}, \mathrm{IN}, \mathrm{DT}, \mathrm{NN}\rangle
$$

Layer 2: Chunks

Chunks are defi ned as any phrase where all children are part-of-speech tags
(Other common chunks are $\mathrm{ADJP}, \mathrm{QP}$)

Layer 2: Chunks

Start(NP)	Join(NP)	Other	Start(NP)	Join(NP)	Other	Start(NP)	Join(NP)
\mid							
DT	NN	Vt	DT	NN	IN	DT	NN
\mid							
the	lawyer	questioned	the	witness	about	the	revolver

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{n}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{n}\right\rangle
$$

- First n decisions are tagging decisions

Next n decisions are chunk tagging decisions
$\left\langle d_{1} \ldots d_{2 n}\right\rangle=\langle\mathrm{DT}, \mathrm{NN}, \mathrm{Vt}, \mathrm{DT}, \mathrm{NN}, \mathrm{IN}, \mathrm{DT}, \mathrm{NN}$, Start(NP), Join(NP), Other, Start(NP), Join(NP), Other, $\operatorname{Start}(\mathrm{NP})$, Join(NP) \rangle

Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

- Join(X) or Start(X), where X is a label (NP, S, VP etc.)
- Check=YES or Check=NO

Meaning of these actions:

- $\operatorname{Start}(\mathrm{X})$ starts a new constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Join(X) continues a constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Check=NO does nothing
- Check=YES takes previous Join or Start action, and converts it into a completed constituent

Check=NO

Check=NO

Check=NO
Sctart(VP)

Check=NO

Check=YES

Check=YES

the revolver
Check=YES

The Final Sequence of decisions

$$
\begin{aligned}
\left\langle d_{1} \ldots d_{m}\right\rangle= & \langle\text { DT, NN, Vt, DT, NN, IN, DT, NN, } \\
& \text { Start(NP), Join(NP), Other, Start(NP), Join(NP), } \\
& \text { Other, Start(NP), Join(NP), } \\
& \text { Start(S), Check=NO, Start(VP), Check=NO, } \\
& \text { Join(VP), Check=NO, Start(PP), Check=NO, } \\
& \text { Join(PP), Check=YES, Join(VP), Check=YES, } \\
& \text { Join(S), Check=YES }\rangle
\end{aligned}
$$

A General Approach: (Conditional) History-Based Models

- Step 1: represent a tree as a sequence of decisions $d_{1} \ldots d_{m}$

$$
T=\left\langle d_{1}, d_{2}, \ldots d_{m}\right\rangle
$$

m is not necessarily the length of the sentence

- Step 2: the probability of a tree is

$$
P(T \mid S)=\prod_{i=1}^{m} P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 3: Use a log-linear model to estimate

$$
P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- Step 4: Search?? (answer we'll get to later: beam or heuristic search)

Applying a Log-Linear Model

- Step 3: Use a log-linear model to estimate

$$
P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)
$$

- A reminder:

$$
P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)=\frac{e^{\phi\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d_{i}\right) \cdot \mathbf{W}}}{\sum_{d \in \mathcal{A}} e^{\phi\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d\right) \cdot \mathbf{W}}}
$$

where:
$\left\langle d_{1} \ldots d_{i-1}, S\right\rangle \quad$ is the history
$d_{i} \quad$ is the outcome
$\phi \quad$ maps a history/outcome pair to a feature vector
W is a parameter vector
$\mathcal{A} \quad$ is set of possible actions
(may be context dependent)

Applying a Log-Linear Model

- Step 3: Use a log-linear model to estimate

$$
P\left(d_{i} \mid d_{1} \ldots d_{i-1}, S\right)=\frac{e^{\phi\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d_{i}\right) \cdot \mathbf{W}}}{\sum_{d \in \mathcal{A}} e^{\phi\left(\left\langle d_{1} \ldots d_{i-1}, S\right\rangle, d\right) \cdot \mathbf{W}}}
$$

- The big question: how do we define ϕ ?
- Ratnaparkhi's method defines ϕ differently depending on whether next decision is:
- A tagging decision (same features as before for POS tagging!)
- A chunking decision
- A start/join decision after chunking
- A check=no/check=yes decision

Layer 2: Chunks

\Rightarrow "TAG=Join(NP);Word0=witness;POS0=NN"
"TAG=Join(NP);POS0=NN"
"TAG=Join(NP);Word+1=about;POS+1=IN"
"TAG=Join(NP);POS+1=IN"
"TAG=Join(NP);Word+2=the;POS+2=DT"
"TAG=Join(NP);POS+2=IN"
"TAG=Join(NP);Word-1=the;POS-1=DT;TAG-1=Start(NP)"
"TAG=Join(NP);POS-1=DT;TAG-1=Start(NP)"
"TAG=Join(NP);TAG-1=Start(NP)"

Layer 3: Join or Start

- Looks at head word, constituent (or POS) label, and start/join annotation of n 'th tree relative to the decision, where $n=$ $-2,-1$
- Looks at head word, constituent (or POS) label of n 'th tree relative to the decision, where $n=0,1,2$
- Looks at bigram features of the above for $(-1,0)$ and $(0,1)$
- Looks at trigram features of the above for ($-2,-1,0$), ($-1,0,1$) and ($0,1,2$)
- The above features with all combinations of head words excluded
- Various punctuation features

Layer 3: Check=NO or Check=YES

- A variety of questions concerning the proposed constituent

The Search Problem

- In POS tagging, we could use the Viterbi algorithm because $P\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{1} \ldots t_{j-1}\right)=P\left(t_{j} \mid w_{1} \ldots w_{n}, j, t_{j-2} \ldots t_{j-1}\right)$
- Now: Decision d_{i} could depend on arbitrary decisions in the "past" \Rightarrow no chance for dynamic programming
- Instead, Ratnaparkhi uses a beam search method

