
6.864: Lecture 10 (October 13th, 2005)

Tagging and History-Based Models




Overview


• The Tagging Problem 

• Hidden Markov Model (HMM) taggers 

• Log-linear taggers 

• Log-linear models for parsing and other problems 



Tagging Problems


• Mapping strings to Tagged Sequences 

a b e e a f h j � a/C b/D e/C e/C a/D f/C h/D j/C




Part-of-Speech Tagging


INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall 
Street, as their CEO Alan Mulally announced first quarter results. 

OUTPUT:


Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V 
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N 
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./. 

N = Noun 
V = Verb 
P = Preposition 
Adv = Adverb 
Adj = Adjective 
. . .




Information Extraction


Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as 
their CEO Alan Mulally announced first quarter results. 

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts 
on [Location Wall Street], as their CEO [Person Alan Mulally] announced first 
quarter results. 



Named Entity Extraction as Tagging


INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall 
Street, as their CEO Alan Mulally announced first quarter results. 

OUTPUT:


Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA 
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA 
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA 
quarter/NA results/NA ./NA 

NA = No entity 
SC = Start Company 
CC = Continue Company 
SL = Start Location 
CL = Continue Location 
. . .




Extracting Glossary Entries from the Web

Input: 

Images removed for copyright reasons.

Set of webpages from The Weather Channel (http://www.weather.com), including a multi-entry 'Weather Glossary' page.


Output: 

Text removed for copyright reasons.

The glossary entry for 'St. Elmo's Fire.'




Our Goal


Training set: 
1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT 
board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./. 
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT 
Dutch/NNP publishing/VBG group/NN ./. 
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN 
Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT 
nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./. 
. . . 
38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN 
Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP 
victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP 
instead/RB ./. 

• From the training set, induce a function or “program” that 
maps new sentences to their tag sequences. 



Our Goal (continued)


• A test data sentence: 
Influential members of the House Ways and Means Committee introduced legislation that 
would restrict how the new savings-and-loan bailout agency can raise capital , creating 
another potential obstacle to the government ’s sale of sick thrifts . 

• Should be mapped to underlying tags: 
Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP 
Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB 
how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD 
raise/VB capital/NN ,/, creating/VBG another/DT potential/JJ obstacle/NN to/TO the/DT 
government/NN ’s/POS sale/NN of/IN sick/JJ thrifts/NNS ./. 

• Our goal is to minimize the number of tagging errors on sentences 
not seen in the training set 



Two Types of Constraints


Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP 
Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB 
how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB 
capital/NN ./. 

• “Local”: e.g., can is more likely to be a modal verb MD rather 
than a noun NN 

• “Contextual”: e.g., a noun is much more likely than a verb to 
follow a determiner 

• Sometimes these preferences are in conflict: 

The trash can is in the garage 



A Naive Approach


• Use a machine learning method to build a “classifier” that 
maps each word individually to its tag 

• A problem: does not take contextual constraints into account 



Hidden Markov Models


• We have an input sentence S = w1, w2, . . . , wn 

(wi is the i’th word in the sentence) 

• We have a tag sequence T = t1, t2, . . . , tn 

(ti is the i’th tag in the sentence) 

• We’ll use an HMM to define 

P (t1, t2, . . . , tn, w1, w2, . . . , wn) 

for any sentence S and tag sequence T of the same length. 

•	 Then the most likely tag sequence for S is 

T � = argmaxT P (T, S) 



How to model P (T, S)?

A Trigram HMM Tagger: 

P (T, S) = P (END | t1 . . . tn, w1 . . . wn)× 
�n 

j=1 [ P (tj | w1 . . . wj−1, t1 . . . tj−1)× 
P (wj | w1 . . . wj−1, t1 . . . tj )] Chain rule 

= P (END|tn−1, tn)×

�

j
n 
=1 [P (tj | tj−2, tj−1) × P (wj | tj )] Independence assumptions


• END is a special tag that terminates the sequence 

• We take t0 = t−1 = START 

• 1st assumption: each tag only depends on previous two tags 
P (tj |tj−1, tj−2) 

• 2nd assumption: each word only depends on underlying tag 
P (wj |tj ) 



An Example


• S = the boy laughed 

• T = DT NN VBD 

P (T, S) = P (END|NN, VBD)× 
P (DT|START, START)× 
P (NN|START, DT)× 
P (VBD|DT, NN)× 
P (the|DT)× 
P (boy|NN)× 
P (laughed|VBD) 



� 

Why the Name?


n n 

P (T, S) = P (END|tn−1, tn)
� 

P (tj | tj−2, tj−1)× P (wj | tj ) 
j=1 j=1 

⎟ ⎞� ⎠ ⎟ ⎞� ⎠

Hidden Markov Chain wj ’s are observed 



How to model P (T, S)?


Hispaniola/NNP quickly/RB became/VB an/DT important/JJ 
base/Vt from which Spain expanded its empire into the rest of the 
Western Hemisphere . 

“Score” for tag Vt: 

P (Vt | DT, JJ) × P (base | Vt) 



Smoothed Estimation


Count(Dt, JJ, Vt)
P (Vt | DT, JJ) = �1 × 

Count(Dt, JJ) 
Count(JJ, Vt)

+�2 × 
Count(JJ) 

Count(Vt)
+�3 × 

Count() 

Count(Vt, base)
P (base | Vt) = 

Count(Vt) 



Dealing with Low-Frequency Words


• Step 1: Split vocabulary into two sets 

Frequent words = words occurring � 5 times in training 
Low frequency words = all other words 

• Step 2: Map low frequency words into a small, finite set, 
depending on prefixes, suffixes etc. 



Dealing with Low-Frequency Words: An Example


[Bikel et. al 1999] An Algorithm that Learns What’s in a Name 

Word class 

twoDigitNum 
fourDigitNum 
containsDigitAndAlpha 
containsDigitAndDash 
containsDigitAndSlash 
containsDigitAndComma 
containsDigitAndPeriod 
othernum 
allCaps 
capPeriod 
firstWord 
initCap 
lowercase 
other 

Example


90 Two digit year 
1990 Four digit year 
A8956-67 Product code 
09-96 Date 
11/9/89 Date 
23,000.00 Monetary amount 
1.00 Monetary amount,percentage 
456789 Other number 
BBN Organization 
M. Person name initial 
first word of sentence no useful capitalization information 
Sally Capitalized word 
can Uncapitalized word 
, Punctuation marks, all other words 

Intuition




�


Dealing with Low-Frequency Words: An Example


Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA 
forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP 
Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA 

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA 
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA 
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA 
results/NA ./NA 

NA = No entity 
SC = Start Company 
CC = Continue Company 
SL = Start Location 
CL = Continue Location 
. . .




The Viterbi Algorithm


• Question: how do we calculate the following?: 

T � = argmaxT log P (T, S) 

• Define n to be the length of the sentence 

• Define a dynamic programming table 

�[i, t−2, t−1] = maximum log probability of a tag sequence ending 

in tags t−2, t−1 at position i 

• Our goal is to calculate maxt−2,t−1�T �[n, t−2, t−1] 



The Viterbi Algorithm: Recursive Definitions


• Base case: 

�[0, �, �] = log 1 = 0 

�[0, t−2, t−1] = log 0 = −∗ for all other t−2, t−1


here � is a special tag padding the beginning of the sentence.


• Recursive case: for i = 1 . . . n, for all t−2, t−1, 

�[i, t−2, t−1] = max {�[i − 1, t, t−2] + Score(S, i, t, t−2, t−1)} 
t�T �{�} 

Backpointers allow us to recover the max probability sequence: 

BP[i, t−2, t−1] = argmax
t�T �{�} {�[i − 1, t, t−2] + Score(S, i, t, t−2, t−1)} 

Where Score(S, i, t, t−2, t−1) = log P (t−1 | t, t−2) + log P (wi | t−1) 

Complexity is O(nk3), where n = length of sentence, k is number 
of possible tags 



The Viterbi Algorithm: Running Time


• O(n|T |3) time to calculate Score(S, i, t, t−2, t−1) for all i, t, 
t−2, t−1. 

• n|T |2 entries in � to be filled in. 

• O(T ) time to fill in one entry 
(assuming O(1) time to look up Score(S, i, t, t−2, t−1)) 

• ∞ O(n|T |3) time 



Pros and Cons


• Hidden markov model taggers are very simple to train 
(compile counts from the training corpus) 

• Perform relatively well (over 90% performance on named 
entities) 

• Main difficulty is modeling 

P (word | tag) 

can be very difficult if “words” are complex 



Log-Linear Models


• We have an input sentence S = w1, w2, . . . , wn 

(wi is the i’th word in the sentence) 

• We have a tag sequence T = t1, t2, . . . , tn 

(ti is the i’th tag in the sentence) 

• We’ll use an log-linear model to define 

P (t1, t2, . . . , tn|w1, w2, . . . , wn) 

for any sentence S and tag sequence T of the same length. 
(Note: contrast with HMM that defines 
P (t1, t2, . . . , tn, w1, w2, . . . , wn)) 

• Then the most likely tag sequence for S is 

T � = argmaxT P (T |S) 



How to model P (T |S)?


A Trigram Log-Linear Tagger: 

P (T |S) = 
�n

j=1 P (tj | w1 . . . wn, t1 . . . tj−1) Chain rule 

�n = j=1 P (tj | tj−2, tj−1, w1, . . . , wn) 
Independence assumptions 

• We take t0 = t−1 = START 

• Assumption: each tag only depends on previous two tags 
P (tj |tj−1, tj−2, w1, . . . , wn) 



An Example


Hispaniola/NNP quickly/RB became/VB an/DT 
important/JJ base/?? from which Spain expanded 
its empire into the rest of the Western Hemisphere . 

• There are many possible tags in the position ?? 
Y = {NN, NNS, Vt, Vi, IN, DT, . . . } 

• The input domain X is the set of all possible histories (or 
contexts) 

• Need to learn a function from (history, tag) pairs to a probability 
P (tag|history) 



Representation: Histories


• A history is a 4-tuple ∈t−1, t−2, w[1:n], i→ 

• t−1, t−2 are the previous two tags. 

• w[1:n] are the n words in the input sentence. 

• i is the index of the word being tagged 

• X is the set of all possible histories 

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ 
base/?? from which Spain expanded its empire into the rest of the 
Western Hemisphere . 

• t−1, t−2 = DT, JJ 

• w[1:n] = ∈Hispaniola, quickly, became, . . . , Hemisphere, .→ 

• i = 6




Feature Vector Representations


• We have some input domain X , and a finite label set Y . Aim 
is to provide a conditional probability P (y | x) for any x ≤ X 
and y ≤ Y . 

• A feature is a function f : X × Y ≥ R 
(Often binary features or indicator functions f : X × Y � {0, 1}). 

• Say we have m features �k for k = 1 . . .m 
∞ A feature vector �(x, y) ≤ R

m for any x ≤ X and y ≤ Y . 



� 

� 

An Example (continued)


• X is the set of all possible histories of form ∈t−1, t−2, w[1:n], i→ 

• Y = {NN, NNS, Vt, Vi, IN, DT, . . . } 

• We have m features �k : X × Y ≥ R for k = 1 . . .m 

For example: 

1 if current word wi is base and t = Vt 
�1(h, t) = 

0 otherwise 

1 if current word wi ends in ing and t = VBG 
�2(h, t) = 

0 otherwise 
. . . 

�1(∈JJ, DT, ∈ Hispaniola, . . . →, 6→, Vt) = 1 
�2(∈JJ, DT, ∈ Hispaniola, . . . →, 6→, Vt) = 0 
. . .




� 

� 

� 

The Full Set of Features in [(Ratnaparkhi, 96)]


• Word/tag features for all word/tag pairs, e.g., 

1 if current word wi is base and t = Vt 
�100(h, t) = 

0 otherwise 

• Spelling features for all prefixes/suffixes of length � 4, e.g., 

1 if current word wi ends in ing and t = VBG 
�101(h, t) = 

0 otherwise 

1 if current word wi starts with pre and t = NN 
�102(h, t) = 

0 otherwise 



� 

� 

� 

� 

� 

The Full Set of Features in [(Ratnaparkhi, 96)]


• Contextual Features, e.g., 

1 if ∈t−2, t−1, t→ = ∈DT, JJ, Vt→ 
�103(h, t) = 

0 otherwise 

1 if ∈t−1, t→ = ∈JJ, Vt→ 
�104(h, t) = 

0 otherwise 

1 if ∈t→ = ∈Vt→ 
�105(h, t) = 

0 otherwise 

1 if previous word wi−1 = the and t = Vt 
�106(h, t) = 

0 otherwise 

1 if next word wi+1 = the and t = Vt 
�107(h, t) = 

0 otherwise 



The Final Result


• We can come up with practically any questions (features) 
regarding history/tag pairs. 

• For a given history x ≤ X , each label in Y is mapped to a 
different feature vector 

�(∈JJ, DT, ∈ Hispaniola, . . . →, 6→, Vt) = 1001011001001100110 

�(∈JJ, DT, ∈ Hispaniola, . . . →, 6→, JJ) = 0110010101011110010 

�(∈JJ, DT, ∈ Hispaniola, . . . →, 6→, NN) = 0001111101001100100 

�(∈JJ, DT, ∈ Hispaniola, . . . →, 6→, IN) = 0001011011000000010 

. . .




Log-Linear Models


• We have some input domain X , and a finite label set Y . Aim 
is to provide a conditional probability P (y | x) for any x ≤ X 
and y ≤ Y . 

• A feature is a function f : X × Y ≥ R 
(Often binary features or indicator functions f : X × Y � {0, 1}). 

• Say we have m features �k for k = 1 . . .m 
∞ A feature vector �(x, y) ≤ R

m for any x ≤ X and y ≤ Y . 

• We also have a parameter vector W ≤ R
m 

• We define 
W·�(x,y)e

P (y | x,W) = � 
y� �Y e

W·�(x,y�) 



� 

� �


Training the Log-Linear Model


• To train a log-linear model, we need a training set (xi, yi) for 
i = 1 . . . n. Then search for 

⎛ 

W
� = argmax

W 

�
�
�
�
�
�


⎜
⎜
⎜
⎜
⎜
⎝ 

W
2 
klog P (yi|xi,W) − C


i	 k

⎟
 ⎞�
 ⎟
⎠
 ⎞�
 ⎠


Log−Likelihood Gaussian P rior 

(see last lecture on log-linear models) 

•	 Training set is simply all history/tag pairs seen in the training 
data 



The Viterbi Algorithm for Log-Linear Models


• Question: how do we calculate the following?: 

T � = argmaxT log P (T |S) 

• Define n to be the length of the sentence 

• Define a dynamic programming table 

�[i, t−2, t−1] = maximum log probability of a tag sequence ending 

in tags t−2, t−1 at position i 

• Our goal is to calculate maxt−2,t−1�T �[n, t−2, t−1] 



The Viterbi Algorithm: Recursive Definitions


• Base case: 

�[0, �, �] = log 1 = 0 

�[0, t−2, t−1] = log 0 = −∗ for all other t−2, t−1


here � is a special tag padding the beginning of the sentence.


• Recursive case: for i = 1 . . . n, for all t−2, t−1, 

�[i, t−2, t−1] = max {�[i − 1, t, t−2] + Score(S, i, t, t−2, t−1)} 
t�T �{�} 

Backpointers allow us to recover the max probability sequence: 

BP[i, t−2, t−1] = argmax
t�T �{�} {�[i − 1, t, t−2] + Score(S, i, t, t−2, t−1)} 

Where Score(S, i, t, t−2, t−1) = log P (t−1 | t, t−2, w1, . . . , wn, i) 

Identical to Viterbi for HMMs, except for the definition of 
Score(S, i, t, t−2, t−1) 



FAQ Segmentation: McCallum et. al


• McCallum et. al compared HMM and log-linear taggers on a 
FAQ Segmentation task 

• Main point: in an HMM, modeling 

P (word|tag) 

is difficult in this domain 



FAQ Segmentation: McCallum et. al


<head>X-NNTP-POSTER: NewsHound v1.33

<head>

<head>Archive name: acorn/faq/part2

<head>Frequency: monthly

<head>


<question>2.6) What configuration of serial cable should I use

<answer>

<answer> Here follows a diagram of the necessary connections

<answer>programs to work properly. They are as far as I know t

<answer>agreed upon by commercial comms software developers fo

<answer>

<answer> Pins 1, 4, and 8 must be connected together inside

<answer>is to avoid the well known serial port chip bugs. The




FAQ Segmentation: Line Features

begins-with-number

begins-with-ordinal

begins-with-punctuation

begins-with-question-word

begins-with-subject

blank

contains-alphanum

contains-bracketed-number

contains-http

contains-non-space

contains-number

contains-pipe

contains-question-mark

ends-with-question-mark

first-alpha-is-capitalized

indented-1-to-4

indented-5-to-10

more-than-one-third-space

only-punctuation

prev-is-blank

prev-begins-with-ordinal

shorter-than-30




FAQ Segmentation: The Log-Linear Tagger


<head>X-NNTP-POSTER: NewsHound v1.33

<head>

<head>Archive name: acorn/faq/part2

<head>Frequency: monthly

<head>


<question>2.6) What configuration of serial cable should I use


Here follows a diagram of the necessary connections

programs to work properly. They are as far as I know t

agreed upon by commercial comms software developers fo


Pins 1, 4, and 8 must be connected together inside

is to avoid the well known serial port chip bugs. The


∞ “tag=question;prev=head;begins-with-number” 
“tag=question;prev=head;contains-alphanum” 
“tag=question;prev=head;contains-nonspace” 
“tag=question;prev=head;contains-number” 
“tag=question;prev=head;prev-is-blank” 



FAQ Segmentation: An HMM Tagger


<question>2.6) What configuration of serial cable should I use


• First solution for P (word | tag): 

P (“2.6) What configuration of serial cable should I use” | question) =

P ( 2.6) | question)×

P (W hat | question)×

P (conf iguration | question)×

P (of | question)×

P (serial | question)×

. . .


• i.e. have a language model for each tag 



contains-number prev-is-blank

� 


FAQ Segmentation: McCallum et. al


• Second solution: first map each sentence to string of features: 

<question>2.6) What configuration of serial cable should I use


<question>begins-with number contains-alphanum contains-nonspace


• Use a language model again: 

P (“2.6) What configuration of serial cable should I use” | question) =

P (begins-with-number | question)×

P (contains-alphanum | question)×

P (contains-nonspace | question)×

P (contains-number | question)×

P (prev-is-blank | question)×




FAQ Segmentation: Results


Method COAP SegPrec SegRec 
ME-Stateless 0.520 0.038 0.362 
TokenHMM 0.865 0.276 0.140 
FeatureHMM 0.941 0.413 0.529 
MEMM 0.965 0.867 0.681 



Overview


• The Tagging Problem 

• Hidden Markov Model (HMM) taggers 

• Log-linear taggers 

• Log-linear models for parsing and other problems 



Log-Linear Taggers: Summary


• The input sentence is S = w1 . . . wn 

• Each tag sequence T has a conditional probability 

P (T | S) = 
�

j
n 
=1 P (tj | w1 . . . wn, j, t1 . . . tj−1) Chain rule 

�n = j=1 P (tj | w1 . . . wn, j, tj−2, tj−1)	 Independence 
assumptions 

• Estimate P (tj | w1 . . . wn, j, tj−2, tj−1) using log-linear 
models 

• Use the Viterbi algorithm to compute 

argmaxT �T n log P (T | S) 



A General Approach: (Conditional) History-Based Models


• We’ve shown how to define P (T | S) where T is a tag 
sequence 

•	 How do we define P (T | S) if T is a parse tree (or another 
structure)? 



� 

A General Approach: (Conditional) History-Based Models


•	 Step 1: represent a tree as a sequence of decisions d1 . . . dm 

T = ∈d1, d2, . . . dm→


m is not necessarily the length of the sentence


•	 Step 2: the probability of a tree is 
m 

P (T | S) = P (di | d1 . . . di−1, S) 
i=1 

•	 Step 3: Use a log-linear model to estimate 

P (di | d1 . . . di−1, S) 

•	 Step 4: Search?? (answer we’ll get to later: beam or heuristic 
search) 



An Example Tree


S(questioned) 

DT NN 

VP(questioned)NP(lawyer) 

the lawyer 
Vt NP(witness) PP(about) 

DT NNquestioned IN NP(revolver) 

the witness about DT NN 

the revolver 



Ratnaparkhi’s Parser: Three Layers of Structure


1. Part-of-speech tags 

2. Chunks 

3. Remaining structure 



Layer 1: Part-of-Speech Tags


DT NN Vt DT NN IN DT NN 

the lawyer questioned the witness about the revolver 

• Step 1: represent a tree as a sequence of decisions d1 . . . dm 

T = ∈d1, d2, . . . dm→ 

• First n decisions are tagging decisions 

∈d1 . . . dn→ = ∈ DT, NN, Vt, DT, NN, IN, DT, NN → 



Layer 2: Chunks


NP Vt NP IN NP 

DT NN questioned DT NN about DT NN 

the lawyer the witness the revolver 

Chunks are defined as any phrase where all children are part-
of-speech tags 

(Other common chunks are ADJP, QP) 



Layer 2: Chunks


Start(NP) Join(NP) Other Start(NP) Join(NP) Other Start(NP) Join(NP) 

DT NN Vt DT NN IN DT NN 

the lawyer questioned the witness about the revolver 

• Step 1: represent a tree as a sequence of decisions d1 . . . dn 

T = ∈d1, d2, . . . dn→ 

• First n decisions are tagging decisions 
Next n decisions are chunk tagging decisions 

∈d1 . . . d2n→ = ∈ DT, NN, Vt, DT, NN, IN, DT, NN, 
Start(NP), Join(NP), Other, Start(NP), Join(NP), 
Other, Start(NP), Join(NP)→ 



Layer 3: Remaining Structure


Alternate Between Two Classes of Actions: 

• Join(X) or Start(X), where X is a label (NP, S, VP etc.) 

• Check=YES or Check=NO 

Meaning of these actions: 

• Start(X) starts a new constituent with label X 
(always acts on leftmost constituent with no start or join label above it) 

• Join(X) continues a constituent with label X 
(always acts on leftmost constituent with no start or join label above it) 

• Check=NO does nothing 

• Check=YES takes previous Join or Start action, and converts 
it into a completed constituent 



NP Vt NP IN NP


DT NN DT NN DT NNquestioned about 

the lawyer the witness the revolver 



Start(S) Vt NP IN NP


NP questioned aboutDT NN DT NN 

DT NN the witness the revolver 

the lawyer 



Start(S) Vt NP IN NP


NP questioned aboutDT NN DT NN 

DT NN the witness the revolver 

the lawyer 

Check=NO 



Start(S) Start(VP) NP IN NP


NP Vt aboutDT NN DT NN 

DT NN questioned the witness the revolver 

the lawyer 



Start(S) Start(VP) NP IN NP


NP Vt aboutDT NN DT NN 

DT NN questioned the witness the revolver 

the lawyer 

Check=NO 



Start(S) Start(VP) Join(VP) IN NP


NP Vt NP about
 DT NN 

DT NN questioned DT NN the revolver 

the lawyer the witness 



Start(S) Start(VP) Join(VP) IN NP


NP Vt NP about
 DT NN 

DT NN questioned DT NN the revolver 

the lawyer the witness 

Check=NO 



Start(S) Start(VP) Join(VP) Start(PP) NP


NP Vt NP IN
 DT NN 

DT NN questioned DT NN about the revolver 

the lawyer the witness 



Start(S) Start(VP) Join(VP) Start(PP) NP


NP Vt NP IN
 DT NN 

DT NN questioned DT NN about the revolver 

the lawyer the witness 

Check=NO 



Start(S) Start(VP) Join(VP) Start(PP) Join(PP)


NP Vt NP IN NP


DT NN DT NN DT NNquestioned about 

the lawyer the witness the revolver 



Start(S) Start(VP) Join(VP) PP


IN NPNP Vt NP


questioned about DT NN 

the lawyer the witness the revolver 

Check=YES 

DT NN DT NN 



Start(S) Start(VP) Join(VP) Join(VP)


NP Vt NP PP


questioned IN NP 

the lawyer the witness about DT NN 

the revolver 

DT NN DT NN 



Start(S) VP


NP


DT NN

Vt NP PP 

the lawyer 
questioned DT NN IN NP 

the witness about DT NN 

the revolver 

Check=YES 



Start(S) Join(S)


NP VP


DT NN 

the lawyer 
Vt NP PP 

DT NNquestioned IN NP 

the witness about DT NN 

the revolver 



S


NP 

DT NN 

VP 

the lawyer 
Vt NP PP 

DT NNquestioned IN NP 

the witness about DT NN 

the revolver 

Check=YES




∈d1 . . . dm


The Final Sequence of decisions


→ = ∈ DT, NN, Vt, DT, NN, IN, DT, NN, 
Start(NP), Join(NP), Other, Start(NP), Join(NP), 
Other, Start(NP), Join(NP), 
Start(S), Check=NO, Start(VP), Check=NO, 
Join(VP), Check=NO, Start(PP), Check=NO, 
Join(PP), Check=YES, Join(VP), Check=YES, 
Join(S), Check=YES → 



� 

A General Approach: (Conditional) History-Based Models


• Step 1: represent a tree as a sequence of decisions d1 . . . dm 

T = ∈d1, d2, . . . dm→


m is not necessarily the length of the sentence


• Step 2: the probability of a tree is 
m 

P (T | S) = P (di | d1 . . . di−1, S) 
i=1 

• Step 3: Use a log-linear model to estimate 

P (di | d1 . . . di−1, S) 

• Step 4: Search?? (answer we’ll get to later: beam or heuristic 
search) 



Applying a Log-Linear Model


• Step 3: Use a log-linear model to estimate 

P (di | d1 . . . di−1, S) 

• A reminder: 
�(∗d1...di−1 ,S∈,di )·We

P (di | d1 . . . di−1, S) = � 
d�A e

�(∗d1 ...di−1,S∈,d)·W 

where: 

∈d1 . . . di−1, S→ is the history 

di is the outcome 

� maps a history/outcome pair to a feature vector 

W is a parameter vector 

A is set of possible actions 

(may be context dependent) 



Applying a Log-Linear Model


• Step 3: Use a log-linear model to estimate 

�(∗d1...di−1 ,S∈,di )·We
P (di | d1 . . . di−1, S) = � 

d�A e
�(∗d1 ...di−1,S∈,d)·W 

• The big question: how do we define �? 

• Ratnaparkhi’s method defines � differently depending on 
whether next decision is: 

– A tagging decision

(same features as before for POS tagging!)


– A chunking decision 

– A start/join decision after chunking 

– A check=no/check=yes decision 



Layer 2: Chunks


Start(NP) Join(NP) Other Start(NP) Join(NP) IN DT NN 

DT NN Vt DT NN about the revolver 

the lawyer questioned the witness 

∞ “TAG=Join(NP);Word0=witness;POS0=NN”

“TAG=Join(NP);POS0=NN”

“TAG=Join(NP);Word+1=about;POS+1=IN”

“TAG=Join(NP);POS+1=IN”

“TAG=Join(NP);Word+2=the;POS+2=DT”

“TAG=Join(NP);POS+2=IN”

“TAG=Join(NP);Word-1=the;POS-1=DT;TAG-1=Start(NP)”

“TAG=Join(NP);POS-1=DT;TAG-1=Start(NP)”

“TAG=Join(NP);TAG-1=Start(NP)”

. . .




Layer 3: Join or Start


• Looks at head word, constituent (or POS) label, and start/join 
annotation of n’th tree relative to the decision, where n = 
−2, −1 

• Looks at head word, constituent (or POS) label of n’th tree 
relative to the decision, where n = 0, 1, 2 

•	 Looks at bigram features of the above for (-1,0) and (0,1) 

•	 Looks at trigram features of the above for (-2,-1,0), (-1,0,1) 
and (0, 1, 2) 

•	 The above features with all combinations of head words 
excluded 

•	 Various punctuation features 



Layer 3: Check=NO or Check=YES


• A variety of questions concerning the proposed constituent 



The Search Problem


• In POS tagging, we could use the Viterbi algorithm because 

P (tj | w1 . . . wn, j, t1 . . . tj−1) = P (tj | w1 . . . wn, j, tj−2 . . . tj−1) 

• Now: Decision di could depend on arbitrary decisions in the 
“past” ∞ no chance for dynamic programming 

• Instead, Ratnaparkhi uses a beam search method 


