#### 6.864: Lecture 10 (October 13th, 2005) Tagging and History-Based Models

### **Overview**

- The Tagging Problem
- Hidden Markov Model (HMM) taggers
- Log-linear taggers
- Log-linear models for parsing and other problems

### **Tagging Problems**

• Mapping strings to Tagged Sequences

a b e e a f h j  $\Rightarrow$  a/C b/D e/C e/C a/D f/C h/D j/C

## **Part-of-Speech Tagging**

**INPUT:** 

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

#### **OUTPUT:**

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

- N = Noun
- $\mathbf{V} = \operatorname{Verb}$
- **P** = Preposition
- Adv = Adverb
- Adj = Adjective

•••

### **Information Extraction**

## Named Entity Recognition

**INPUT:** Profi ts soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced fi rst quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

## **Named Entity Extraction as Tagging**

#### **INPUT:**

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

#### **OUTPUT**:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity

. . .

- **SC** = Start Company
- **CC** = Continue Company
- SL = Start Location
- CL = Continue Location

# **Extracting Glossary Entries from the Web** Input:

Images removed for copyright reasons.

Set of webpages from The Weather Channel (http://www.weather.com), including a multi-entry 'Weather Glossary' page.

#### Output:

Text removed for copyright reasons. The glossary entry for 'St. Elmo's Fire.'

## Our Goal

#### **Training set:**

. . .

**1** Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.

**3** Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

**38,219** It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

• From the training set, induce a function or "program" that maps new sentences to their tag sequences.

## **Our Goal (continued)**

#### • A test data sentence:

Influential members of the House Ways and Means Committee introduced legislation that would restrict how the new savings-and-loan bailout agency can raise capital, creating another potential obstacle to the government 's sale of sick thrifts.

#### • Should be mapped to underlying tags:

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ,/, creating/VBG another/DT potential/JJ obstacle/NN to/TO the/DT government/NN 's/POS sale/NN of/IN sick/JJ thrifts/NNS ./.

• Our goal is to minimize the number of tagging errors on sentences not seen in the training set

## **Two Types of Constraints**

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- "Local": e.g., *can* is more likely to be a modal verb MD rather than a noun NN
- "Contextual": e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in conflict:

The trash can is in the garage

## A Naive Approach

- Use a machine learning method to build a "classifier" that maps each word individually to its tag
- A problem: does not take contextual constraints into account

#### **Hidden Markov Models**

- We have an input sentence  $S = w_1, w_2, \dots, w_n$ ( $w_i$  is the *i*'th word in the sentence)
- We have a tag sequence  $T = t_1, t_2, \ldots, t_n$ ( $t_i$  is the *i*'th tag in the sentence)
- We'll use an HMM to define

$$P(t_1, t_2, \ldots, t_n, w_1, w_2, \ldots, w_n)$$

for any sentence S and tag sequence T of the same length.

 $\bullet\,$  Then the most likely tag sequence for S is

$$T^* = \operatorname{argmax}_T P(T, S)$$

## How to model P(T, S)?

#### A Trigram HMM Tagger:

$$P(T,S) = P(\text{END} \mid t_1 \dots t_n, w_1 \dots w_n) \times \prod_{j=1}^n \left[ \begin{array}{c} P(t_j \mid w_1 \dots w_{j-1}, t_1 \dots t_{j-1}) \times \\ P(w_j \mid w_1 \dots w_{j-1}, t_1 \dots t_j) \end{array} \right] \quad \text{Chain rule}$$

 $= P(\text{END}|t_{n-1}, t_n) \times \\ \prod_{j=1}^{n} \left[ P(t_j \mid t_{j-2}, t_{j-1}) \times P(w_j \mid t_j) \right]$  Independence assumptions

- END is a special tag that terminates the sequence
- We take  $t_0 = t_{-1} = \text{START}$
- 1st assumption: each tag only depends on previous two tags  $P(t_j|t_{j-1}, t_{j-2})$
- 2nd assumption: each word only depends on underlying tag  $P(w_j|t_j)$

### An Example

- S = the boy laughed
- T = DT NN VBD

```
\begin{split} P(T,S) &= P(\text{END}|\text{NN},\text{VBD}) \times \\ P(\text{DT}|\text{START},\text{START}) \times \\ P(\text{NN}|\text{START},\text{DT}) \times \\ P(\text{VBD}|\text{DT},\text{NN}) \times \\ P(\text{the}|\text{DT}) \times \\ P(\text{boy}|\text{NN}) \times \\ P(\text{laughed}|\text{VBD}) \end{split}
```

## Why the Name?

$$P(T,S) = P(\text{END}|t_{n-1}, t_n) \prod_{j=1}^n P(t_j \mid t_{j-2}, t_{j-1}) \times \prod_{\substack{j=1 \\ w_j \text{ 's are observed}}}^n P(w_j \mid t_j)$$

## How to model P(T, S)?

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/Vt from which Spain expanded its empire into the rest of the Western Hemisphere .

"Score" for tag Vt:

```
P(Vt | DT, JJ) \times P(base | Vt)
```

#### **Smoothed Estimation**

$$P(Vt \mid DT, JJ) = \lambda_1 \times \frac{Count(Dt, JJ, Vt)}{Count(Dt, JJ)} + \lambda_2 \times \frac{Count(JJ, Vt)}{Count(JJ)} + \lambda_3 \times \frac{Count(Vt)}{Count()}$$

$$P(\text{base} | \text{Vt}) = \frac{Count(\text{Vt, base})}{Count(\text{Vt})}$$

## **Dealing with Low-Frequency Words**

• Step 1: Split vocabulary into two sets

```
Frequent words= words occurring \geq 5 times in trainingLow frequency words= all other words
```

• Step 2: Map low frequency words into a small, finite set, depending on prefixes, suffixes etc.

# **Dealing with Low-Frequency Words: An Example**

#### [Bikel et. al 1999] An Algorithm that Learns What's in a Name

\_

| Word class             | Example                 | Intuition                            |
|------------------------|-------------------------|--------------------------------------|
|                        |                         |                                      |
| twoDigitNum            | 90                      | Two digit year                       |
| fourDigitNum           | 1990                    | Four digit year                      |
| containsDigitAndAlpha  | A8956-67                | Product code                         |
| containsDigitAndDash   | 09-96                   | Date                                 |
| containsDigitAndSlash  | 11/9/89                 | Date                                 |
| containsDigitAndComma  | 23,000.00               | Monetary amount                      |
| containsDigitAndPeriod | 1.00                    | Monetary amount, percentage          |
| othernum               | 456789                  | Other number                         |
| allCaps                | BBN                     | Organization                         |
| capPeriod              | М.                      | Person name initial                  |
| fi rstWord             | fi rst word of sentence | no useful capitalization information |
| initCap                | Sally                   | Capitalized word                     |
| lowercase              | can                     | Uncapitalized word                   |
| other                  | ,                       | Punctuation marks, all other words   |
|                        | I I                     |                                      |

## **Dealing with Low-Frequency Words: An Example**

Profi ts/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA fi rst/NA quarter/NA results/NA ./NA

 $\Downarrow$ 

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

NA = No entity

. . .

- **SC** = Start Company
- **CC** = Continue Company
- SL = Start Location
- **CL** = Continue Location

## The Viterbi Algorithm

• Question: how do we calculate the following?:

 $T^* = \operatorname{argmax}_T \log P(T, S)$ 

- $\bullet$  Define n to be the length of the sentence
- Define a dynamic programming table

 $\pi[i, t_{-2}, t_{-1}] =$ maximum log probability of a tag sequence ending in tags  $t_{-2}, t_{-1}$  at position *i* 

• Our goal is to calculate  $\max_{t_{-2},t_{-1}\in\mathcal{T}}\pi[n,t_{-2},t_{-1}]$ 

### The Viterbi Algorithm: Recursive Definitions

• Base case:

$$\pi[0, *, *] = \log 1 = 0$$
  
$$\pi[0, t_{-2}, t_{-1}] = \log 0 = -\infty \text{ for all other } t_{-2}, t_{-1}$$

here \* is a special tag padding the beginning of the sentence.

• **Recursive case:** for  $i = 1 \dots n$ , for all  $t_{-2}, t_{-1}$ ,

 $\pi[i, t_{-2}, t_{-1}] = \max_{t \in \mathcal{T} \cup \{*\}} \{\pi[i - 1, t, t_{-2}] + Score(S, i, t, t_{-2}, t_{-1})\}$ 

Backpointers allow us to recover the max probability sequence:

$$BP[i, t_{-2}, t_{-1}] = \operatorname{argmax}_{t \in \mathcal{T} \cup \{*\}} \{\pi[i - 1, t, t_{-2}] + Score(S, i, t, t_{-2}, t_{-1})\}$$

Where  $Score(S, i, t, t_{-2}, t_{-1}) = \log P(t_{-1} \mid t, t_{-2}) + \log P(w_i \mid t_{-1})$ 

Complexity is  $O(nk^3)$ , where n =length of sentence, k is number of possible tags

## The Viterbi Algorithm: Running Time

- $O(n|\mathcal{T}|^3)$  time to calculate  $Score(S, i, t, t_{-2}, t_{-1})$  for all  $i, t, t_{-2}, t_{-1}$ .
- $n|\mathcal{T}|^2$  entries in  $\pi$  to be filled in.
- $O(\mathcal{T})$  time to fill in one entry (assuming O(1) time to look up  $Score(S, i, t, t_{-2}, t_{-1})$ )
- $\Rightarrow O(n|\mathcal{T}|^3)$  time

#### **Pros and Cons**

- Hidden markov model taggers are very simple to train (compile counts from the training corpus)
- Perform relatively well (over 90% performance on named entities)
- Main difficulty is modeling

 $P(word \mid tag)$ 

can be very difficult if "words" are complex

### **Log-Linear Models**

- We have an input sentence  $S = w_1, w_2, \dots, w_n$ ( $w_i$  is the *i*'th word in the sentence)
- We have a tag sequence  $T = t_1, t_2, \ldots, t_n$ ( $t_i$  is the *i*'th tag in the sentence)
- We'll use an log-linear model to define

$$P(t_1, t_2, \ldots, t_n | w_1, w_2, \ldots, w_n)$$

for any sentence S and tag sequence T of the same length. (Note: contrast with HMM that defines  $P(t_1, t_2, \ldots, t_n, w_1, w_2, \ldots, w_n)$ )

• Then the most likely tag sequence for S is

$$T^* = \operatorname{argmax}_T P(T|S)$$

A Trigram Log-Linear Tagger:

 $P(T|S) = \prod_{j=1}^{n} P(t_j \mid w_1 \dots w_n, t_1 \dots t_{j-1})$  Chain rule

$$= \prod_{j=1}^{n} P(t_j \mid t_{j-2}, t_{j-1}, w_1, \dots, w_n)$$
  
Independence assumptions

- We take  $t_0 = t_{-1} = \text{START}$
- Assumption: each tag only depends on previous two tags  $P(t_j|t_{j-1}, t_{j-2}, w_1, \dots, w_n)$

## An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

• There are many possible tags in the position ??  $\mathcal{Y} = \{NN, NNS, Vt, Vi, IN, DT, ...\}$ 

 $\bullet$  The input domain  ${\mathcal X}$  is the set of all possible histories (or contexts)

• Need to learn a function from (history, tag) pairs to a probability P(tag|history)

### **Representation: Histories**

- A history is a 4-tuple  $\langle t_{-1}, t_{-2}, w_{[1:n]}, i \rangle$
- $t_{-1}, t_{-2}$  are the previous two tags.
- $w_{[1:n]}$  are the *n* words in the input sentence.
- *i* is the index of the word being tagged
- $\mathcal{X}$  is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- $t_{-1}, t_{-2} = DT, JJ$
- $w_{[1:n]} = \langle Hispaniola, quickly, became, \dots, Hemisphere, . \rangle$
- *i* = 6

#### **Feature Vector Representations**

- We have some input domain X, and a finite label set Y. Aim is to provide a conditional probability P(y | x) for any x ∈ X and y ∈ Y.
- A feature is a function f : X × Y → ℝ
  (Often binary features or indicator functions f : X × Y → {0,1}).
- Say we have m features  $\phi_k$  for  $k = 1 \dots m$  $\Rightarrow$  A feature vector  $\phi(x, y) \in \mathbb{R}^m$  for any  $x \in \mathcal{X}$  and  $y \in \mathcal{Y}$ .

### An Example (continued)

- $\mathcal{X}$  is the set of all possible histories of form  $\langle t_{-1}, t_{-2}, w_{[1:n]}, i \rangle$
- $\mathcal{Y} = \{NN, NNS, Vt, Vi, IN, DT, \dots\}$
- We have *m* features  $\phi_k : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$  for  $k = 1 \dots m$

For example:

$$\phi_1(h, t) = \begin{cases} 1 & \text{if current word } w_i \text{ is base and } t = \forall t \\ 0 & \text{otherwise} \end{cases}$$
  
$$\phi_2(h, t) = \begin{cases} 1 & \text{if current word } w_i \text{ ends in ing and } t = \forall \mathsf{BG} \\ 0 & \text{otherwise} \end{cases}$$

 $\phi_1(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, Vt) = 1$  $\phi_2(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, Vt) = 0$ 

## The Full Set of Features in [(Ratnaparkhi, 96)]

• Word/tag features for all word/tag pairs, e.g.,

$$\phi_{100}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ is base and } t = \forall t \\ 0 & \text{otherwise} \end{cases}$$

• Spelling features for all prefixes/suffixes of length  $\leq$  4, e.g.,

$$\phi_{101}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ ends in ing and } t = \text{VBG} \\ 0 & \text{otherwise} \end{cases}$$

 $\phi_{102}(h,t) = \begin{cases} 1 & \text{if current word } w_i \text{ starts with pre and } t = \text{NN} \\ 0 & \text{otherwise} \end{cases}$ 

## The Full Set of Features in [(Ratnaparkhi, 96)]

• Contextual Features, e.g.,

$$\begin{split} \phi_{103}(h,t) &= \begin{cases} 1 & \text{if } \langle t_{-2}, t_{-1}, t \rangle = \langle \text{DT, JJ, Vt} \rangle \\ 0 & \text{otherwise} \end{cases} \\ \phi_{104}(h,t) &= \begin{cases} 1 & \text{if } \langle t_{-1}, t \rangle = \langle \text{JJ, Vt} \rangle \\ 0 & \text{otherwise} \end{cases} \\ \phi_{105}(h,t) &= \begin{cases} 1 & \text{if } \langle t \rangle = \langle \text{Vt} \rangle \\ 0 & \text{otherwise} \end{cases} \\ \phi_{106}(h,t) &= \begin{cases} 1 & \text{if previous word } w_{i-1} = the \text{ and } t = \text{Vt} \\ 0 & \text{otherwise} \end{cases} \\ \phi_{107}(h,t) &= \begin{cases} 1 & \text{if next word } w_{i+1} = the \text{ and } t = \text{Vt} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

#### **The Final Result**

- We can come up with practically any questions (*features*) regarding history/tag pairs.
- For a given history  $x \in \mathcal{X}$ , each label in  $\mathcal{Y}$  is mapped to a different feature vector

$$\phi(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, Vt) = 1001011001001100110$$
  

$$\phi(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, JJ) = 0110010101011110010$$
  

$$\phi(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, NN) = 0001111101001100100$$
  

$$\phi(\langle JJ, DT, \langle Hispaniola, \dots \rangle, 6 \rangle, IN) = 000101101100000010$$

. . .

### **Log-Linear Models**

- We have some input domain X, and a finite label set Y. Aim is to provide a conditional probability P(y | x) for any x ∈ X and y ∈ Y.
- A feature is a function f : X × Y → ℝ
  (Often binary features or indicator functions f : X × Y → {0,1}).
- Say we have m features  $\phi_k$  for  $k = 1 \dots m$  $\Rightarrow$  A feature vector  $\phi(x, y) \in \mathbb{R}^m$  for any  $x \in \mathcal{X}$  and  $y \in \mathcal{Y}$ .
- We also have a **parameter vector**  $\mathbf{W} \in \mathbb{R}^m$
- We define

$$P(y \mid x, \mathbf{W}) = \frac{e^{\mathbf{W} \cdot \phi(x, y)}}{\sum_{y' \in \mathcal{Y}} e^{\mathbf{W} \cdot \phi(x, y')}}$$

## **Training the Log-Linear Model**

• To train a log-linear model, we need a training set  $(x_i, y_i)$  for  $i = 1 \dots n$ . Then search for

$$\mathbf{W}^* = \operatorname{argmax}_{\mathbf{W}} \left( \underbrace{\sum_{i} \log P(y_i | x_i, \mathbf{W})}_{log-Likelihood} - \underbrace{C \sum_{k} \mathbf{W}_k^2}_{Gaussian Prior} \right)$$

(see last lecture on log-linear models)

• Training set is simply all history/tag pairs seen in the training data

### The Viterbi Algorithm for Log-Linear Models

• Question: how do we calculate the following?:

 $T^* = \operatorname{argmax}_T \log P(T|S)$ 

- $\bullet$  Define n to be the length of the sentence
- Define a dynamic programming table

 $\pi[i, t_{-2}, t_{-1}] =$ maximum log probability of a tag sequence ending in tags  $t_{-2}, t_{-1}$  at position *i* 

• Our goal is to calculate  $\max_{t_{-2},t_{-1}\in\mathcal{T}}\pi[n,t_{-2},t_{-1}]$
## The Viterbi Algorithm: Recursive Definitions

• Base case:

 $\pi[0, *, *] = \log 1 = 0$  $\pi[0, t_{-2}, t_{-1}] = \log 0 = -\infty \text{ for all other } t_{-2}, t_{-1}$ 

here \* is a special tag padding the beginning of the sentence.

• **Recursive case:** for  $i = 1 \dots n$ , for all  $t_{-2}, t_{-1}$ ,

 $\pi[i, t_{-2}, t_{-1}] = \max_{t \in \mathcal{T} \cup \{*\}} \{\pi[i - 1, t, t_{-2}] + Score(S, i, t, t_{-2}, t_{-1})\}$ 

Backpointers allow us to recover the max probability sequence:

$$BP[i, t_{-2}, t_{-1}] = \operatorname{argmax}_{t \in \mathcal{T} \cup \{*\}} \{\pi[i - 1, t, t_{-2}] + Score(S, i, t, t_{-2}, t_{-1})\}$$

Where 
$$Score(S, i, t, t_{-2}, t_{-1}) = \log P(t_{-1} \mid t, t_{-2}, w_1, \dots, w_n, i)$$

Identical to Viterbi for HMMs, except for the definition of  $Score(S, i, t, t_{-2}, t_{-1})$ 

## FAQ Segmentation: McCallum et. al

- McCallum et. al compared HMM and log-linear taggers on a *FAQ Segmentation* task
- Main point: in an HMM, modeling

P(word|tag)

is difficult in this domain

### FAQ Segmentation: McCallum et. al

### **FAQ Segmentation: Line Features**

begins-with-number begins-with-ordinal begins-with-punctuation begins-with-question-word begins-with-subject blank contains-alphanum contains-bracketed-number contains-http contains-non-space contains-number contains-pipe contains-question-mark ends-with-question-mark first-alpha-is-capitalized indented-1-to-4 indented-5-to-10 more-than-one-third-space only-punctuation prev-is-blank prev-begins-with-ordinal shorter-than-30

# **FAQ Segmentation: The Log-Linear Tagger**

> Here follows a diagram of the necessary connections programs to work properly. They are as far as I know t agreed upon by commercial comms software developers fo

Pins 1, 4, and 8 must be connected together inside is to avoid the well known serial port chip bugs. The

⇒ "tag=question;prev=head;begins-with-number" "tag=question;prev=head;contains-alphanum" "tag=question;prev=head;contains-nonspace" "tag=question;prev=head;contains-number" "tag=question;prev=head;prev-is-blank"

# **FAQ Segmentation: An HMM Tagger**

<question>2.6) What configuration of serial cable should I use

• First solution for  $P(word \mid tag)$ :

P(`2.6) What configuration of serial cable should I use" | question) = P(2.6) | question)×  $P(What | question) \times$   $P(configuration | question) \times$   $P(of | question) \times$   $P(serial | question) \times$ ...

• i.e. have a **language model** for each tag

# FAQ Segmentation: McCallum et. al

• Second solution: first map each sentence to string of features:

<question>2.6) What configuration of serial cable should I use

 $\Rightarrow$ 

<question>begins-with number contains-alphanum contains-nonspace

#### • Use a language model again:

P(`2.6) What configuration of serial cable should I use" | question) =  $P(\text{begins-with-number | question}) \times$   $P(\text{contains-alphanum | question}) \times$   $P(\text{contains-nonspace | question}) \times$   $P(\text{contains-number | question}) \times$  $P(\text{prev-is-blank | question}) \times$ 

# **FAQ Segmentation: Results**

| Method              | COAP  | SegPrec | SegRec |
|---------------------|-------|---------|--------|
| <b>ME-Stateless</b> | 0.520 | 0.038   | 0.362  |
| TokenHMM            | 0.865 | 0.276   | 0.140  |
| FeatureHMM          | 0.941 | 0.413   | 0.529  |
| MEMM                | 0.965 | 0.867   | 0.681  |

## **Overview**

- The Tagging Problem
- Hidden Markov Model (HMM) taggers
- Log-linear taggers
- Log-linear models for parsing and other problems

## **Log-Linear Taggers: Summary**

- The input sentence is  $S = w_1 \dots w_n$
- Each tag sequence T has a conditional probability

$$P(T \mid S) = \prod_{j=1}^{n} P(t_j \mid w_1 \dots w_n, j, t_1 \dots t_{j-1})$$
 Chain rule  
$$= \prod_{j=1}^{n} P(t_j \mid w_1 \dots w_n, j, t_{j-2}, t_{j-1})$$
 Independence  
assumptions

- Estimate  $P(t_j \mid w_1 \dots w_n, j, t_{j-2}, t_{j-1})$  using log-linear models
- Use the Viterbi algorithm to compute

 $\operatorname{argmax}_{T \in \mathcal{T}^n} \log P(T \mid S)$ 

# A General Approach: (Conditional) History-Based Models

- We've shown how to define  $P(T \mid S)$  where T is a tag sequence
- How do we define  $P(T \mid S)$  if T is a parse tree (or another structure)?

## A General Approach: (Conditional) History-Based Models

• Step 1: represent a tree as a sequence of **decisions**  $d_1 \dots d_m$ 

$$T = \langle d_1, d_2, \dots d_m \rangle$$

m is **not** necessarily the length of the sentence

• Step 2: the probability of a tree is

$$P(T \mid S) = \prod_{i=1}^{m} P(d_i \mid d_1 \dots d_{i-1}, S)$$

• Step 3: Use a log-linear model to estimate

 $P(d_i \mid d_1 \dots d_{i-1}, S)$ 

• Step 4: Search?? (answer we'll get to later: beam or heuristic search)

### **An Example Tree**



# **Ratnaparkhi's Parser: Three Layers of Structure**

- 1. Part-of-speech tags
- 2. Chunks
- 3. Remaining structure

## Layer 1: Part-of-Speech Tags



• Step 1: represent a tree as a sequence of **decisions**  $d_1 \dots d_m$ 

$$T = \langle d_1, d_2, \dots d_m \rangle$$

• First *n* decisions are tagging decisions  $\langle d_1 \dots d_n \rangle = \langle \text{ DT, NN, Vt, DT, NN, IN, DT, NN} \rangle$ 

## Layer 2: Chunks



Chunks are defined as any phrase where all children are partof-speech tags

(Other common chunks are ADJP, QP)

# Layer 2: Chunks



• Step 1: represent a tree as a sequence of **decisions**  $d_1 \dots d_n$ 

$$T = \langle d_1, d_2, \dots d_n \rangle$$

- First *n* decisions are tagging decisions Next *n* decisions are chunk tagging decisions
  - $\langle d_1 \dots d_{2n} \rangle = \langle \text{DT, NN, Vt, DT, NN, IN, DT, NN,}$ Start(NP), Join(NP), Other, Start(NP), Join(NP), Other, Start(NP), Join(NP) \rangle

# **Layer 3: Remaining Structure**

#### **Alternate Between Two Classes of Actions:**

- Join(X) or Start(X), where X is a label (NP, S, VP etc.)
- Check=YES or Check=NO

#### Meaning of these actions:

- Start(X) starts a new constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Join(X) continues a constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Check=NO does nothing
- Check=YES takes previous Join or Start action, and converts it into a completed constituent



Check=YES





#### Check=YES



revolver





### **The Final Sequence of decisions**

 $\langle d_1 \dots d_m \rangle = \langle \text{DT, NN, Vt, DT, NN, IN, DT, NN,}$ Start(NP), Join(NP), Other, Start(NP), Join(NP), Other, Start(NP), Join(NP), Start(S), Check=NO, Start(VP), Check=NO, Join(VP), Check=NO, Start(PP), Check=NO, Join(PP), Check=YES, Join(VP), Check=YES, Join(S), Check=YES  $\rangle$ 

## A General Approach: (Conditional) History-Based Models

• Step 1: represent a tree as a sequence of **decisions**  $d_1 \dots d_m$  $T = \langle d_1, d_2, \dots d_m \rangle$ 

m is **not** necessarily the length of the sentence

• Step 2: the probability of a tree is

$$P(T \mid S) = \prod_{i=1}^{m} P(d_i \mid d_1 \dots d_{i-1}, S)$$

- Step 3: Use a log-linear model to estimate  $P(d_i \mid d_1 \dots d_{i-1}, S)$
- Step 4: Search?? (answer we'll get to later: beam or heuristic search)

# **Applying a Log-Linear Model**

- Step 3: Use a log-linear model to estimate  $P(d_i \mid d_1 \dots d_{i-1}, S)$
- A reminder:

$$P(d_i \mid d_1 \dots d_{i-1}, S) = \frac{e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d_i) \cdot \mathbf{W}}}{\sum_{d \in \mathcal{A}} e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d) \cdot \mathbf{W}}}$$

where:

- $\langle d_1 \dots d_{i-1}, S \rangle$  is the history
  - $d_i$  is the outcome
  - $\phi$  maps a history/outcome pair to a feature vector
  - W is a parameter vector
  - $\mathcal{A}$  is set of possible actions

(may be context dependent)
# **Applying a Log-Linear Model**

• Step 3: Use a log-linear model to estimate

$$P(d_i \mid d_1 \dots d_{i-1}, S) = \frac{e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d_i) \cdot \mathbf{W}}}{\sum_{d \in \mathcal{A}} e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d) \cdot \mathbf{W}}}$$

- The big question: how do we define  $\phi$ ?
- Ratnaparkhi's method defines  $\phi$  differently depending on whether next decision is:
  - A tagging decision
     (same features as before for POS tagging!)
  - A chunking decision
  - A start/join decision after chunking
  - A check=no/check=yes decision

#### Layer 2: Chunks



```
⇒ "TAG=Join(NP);Word0=witness;POS0=NN"
"TAG=Join(NP);POS0=NN"
"TAG=Join(NP);Word+1=about;POS+1=IN"
"TAG=Join(NP);POS+1=IN"
"TAG=Join(NP);Word+2=the;POS+2=DT"
"TAG=Join(NP);POS+2=IN"
"TAG=Join(NP);Word-1=the;POS-1=DT;TAG-1=Start(NP)"
"TAG=Join(NP);POS-1=DT;TAG-1=Start(NP)"
"TAG=Join(NP);TAG-1=Start(NP)"
```

. . .

## Layer 3: Join or Start

- Looks at head word, constituent (or POS) label, and start/join annotation of n'th tree relative to the decision, where n = -2, -1
- Looks at head word, constituent (or POS) label of n'th tree relative to the decision, where n = 0, 1, 2
- Looks at bigram features of the above for (-1,0) and (0,1)
- Looks at trigram features of the above for (-2,-1,0), (-1,0,1) and (0, 1, 2)
- The above features with all combinations of head words excluded
- Various punctuation features

## Layer 3: Check=NO or Check=YES

• A variety of questions concerning the proposed constituent

#### **The Search Problem**

• In POS tagging, we could use the Viterbi algorithm because  $P(t_j \mid w_1 \dots w_n, j, t_1 \dots t_{j-1}) = P(t_j \mid w_1 \dots w_n, j, t_{j-2} \dots t_{j-1})$ 

- Now: Decision  $d_i$  could depend on arbitrary decisions in the "past"  $\Rightarrow$  no chance for dynamic programming
- Instead, Ratnaparkhi uses a beam search method