6.864: Lecture 16 (November 8th, 2005) Machine Translation Part II

Overview

- The Structure of IBM Models 1 and 2
- EM Training of Models 1 and 2
- Some examples of training Models 1 and 2
- Decoding

Recap: IBM Model 1

• Aim is to model the distribution

 $P(\mathbf{f} \mid \mathbf{e})$

where e is an English sentence $e_1 \dots e_l$ f is a French sentence $f_1 \dots f_m$

• Only parameters in Model 1 are **translation parameters**:

 $\mathbf{T}(f \mid e)$

where f is a French word, e is an English word

• e.g.,

 $\mathbf{T}(le \mid the) = 0.7$ $\mathbf{T}(la \mid the) = 0.2$ $\mathbf{T}(l' \mid the) = 0.1$

Recap: Alignments in IBM Model 1

• Aim is to model the distribution

 $P(\mathbf{f} \mid \mathbf{e})$

where e is an English sentence $e_1 \dots e_l$ f is a French sentence $f_1 \dots f_m$

- An **alignment** a identifies which English word each French word originated from
- Formally, an **alignment** a is $\{a_1, \ldots, a_m\}$, where each $a_j \in \{0 \ldots l\}$.
- There are (l + 1)^m possible alignments.
 In IBM model 1 all alignments a are equally likely:

$$P(\mathbf{a} \mid \mathbf{e}) = C \times \frac{1}{(l+1)^m}$$

where $C = prob(length(\mathbf{f}) = m)$ is a constant.

IBM Model 1: The Generative Process

To generate a French string f from an English string e:

- Step 1: Pick the length of f (all lengths equally probable, probability C)
- Step 2: Pick an alignment a with probability $\frac{1}{(l+1)^m}$
- Step 3: Pick the French words with probability

$$P(\mathbf{f} \mid \mathbf{a}, \mathbf{e}) = \prod_{j=1}^{m} \mathbf{T}(f_j \mid e_{a_j})$$

The final result:

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = P(\mathbf{a} \mid e)P(\mathbf{f} \mid \mathbf{a}, e) = \frac{C}{(l+1)^m} \prod_{j=1}^m \mathbf{T}(f_j \mid e_{a_j})$$

IBM Model 2

- Only difference: we now introduce **alignment** or **distortion** parameters
 - $\mathbf{D}(i \mid j, l, m) =$ Probability that j'th French word is connected to i'th English word, given sentence lengths of e and f are l and m respectively

• Define

$$P(\mathbf{a} \mid \mathbf{e}, l, m) = \prod_{j=1}^{m} \mathbf{D}(a_j \mid j, l, m)$$

where $a = \{a_1, ..., a_m\}$

• Gives

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}, l, m) = \prod_{j=1}^{m} \mathbf{D}(a_j \mid j, l, m) \mathbf{T}(f_j \mid e_{a_j})$$

• Note: Model 1 is a special case of Model 2, where $D(i \mid j, l, m) = \frac{1}{l+1}$ for all i, j.

An Example

$$l = 6$$

- m = 7
- \mathbf{e} = And the program has been implemented
- \mathbf{f} = Le programme a ete mis en application

$$\mathbf{a} = \{2, 3, 4, 5, 6, 6, 6\}$$

$$P(\mathbf{a} \mid \mathbf{e}, 6, 7) = \mathbf{D}(2 \mid 1, 6, 7) \times \\ \mathbf{D}(3 \mid 2, 6, 7) \times \\ \mathbf{D}(4 \mid 3, 6, 7) \times \\ \mathbf{D}(5 \mid 4, 6, 7) \times \\ \mathbf{D}(6 \mid 5, 6, 7) \times \\ \mathbf{D}(6 \mid 6, 6, 7) \times \\ \mathbf{D}(6 \mid 7, 6, 7)$$

 $P(\mathbf{f} \mid \mathbf{a}, \mathbf{e}) = \mathbf{T}(Le \mid the) \times \\ \mathbf{T}(programme \mid program) \times \\ \mathbf{T}(a \mid has) \times \\ \mathbf{T}(ete \mid been) \times \\ \mathbf{T}(mis \mid implemented) \times \\ \mathbf{T}(en \mid implemented) \times \\ \mathbf{T}(application \mid implemented)$

IBM Model 2: The Generative Process

To generate a French string f from an English string e:

- Step 1: Pick the length of f (all lengths equally probable, probability C)
- Step 2: Pick an alignment $\mathbf{a} = \{a_1, a_2 \dots a_m\}$ with probability

$$\prod_{j=1}^{m} \mathbf{D}(a_j \mid j, l, m)$$

• Step 3: Pick the French words with probability

$$P(\mathbf{f} \mid \mathbf{a}, \mathbf{e}) = \prod_{j=1}^{m} \mathbf{T}(f_j \mid e_{a_j})$$

The final result:

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = P(\mathbf{a} \mid \mathbf{e})P(\mathbf{f} \mid \mathbf{a}, \mathbf{e}) = C \prod_{j=1}^{m} \mathbf{D}(a_j \mid j, l, m)\mathbf{T}(f_j \mid e_{a_j})$$

Overview

- The Structure of IBM Models 1 and 2
- EM Training of Models 1 and 2
- Some examples of training Models 1 and 2
- Decoding

A Hidden Variable Problem

• We have:

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = C \prod_{j=1}^{m} \mathbf{D}(a_j \mid j, l, m) \mathbf{T}(f_j \mid e_{a_j})$$

• And:

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{\mathbf{a} \in \mathcal{A}} C \prod_{j=1}^{m} \mathbf{D}(a_j \mid j, l, m) \mathbf{T}(f_j \mid e_{a_j})$$

where \mathcal{A} is the set of all possible alignments.

A Hidden Variable Problem

• Training data is a set of $(\mathbf{f}_k, \mathbf{e}_k)$ pairs, likelihood is

$$\sum_{k} \log P(\mathbf{f}_k \mid \mathbf{e}_k) = \sum_{k} \log \sum_{\mathbf{a} \in \mathcal{A}} P(\mathbf{a} \mid \mathbf{e}_k) P(\mathbf{f}_k \mid \mathbf{a}, \mathbf{e}_k)$$

where \mathcal{A} is the set of all possible alignments.

- We need to maximize this function w.r.t. the translation parameters, and the alignment probabilities
- EM can be used for this problem: initialize parameters randomly, and at each iteration choose

$$\Theta_t = \operatorname{argmax}_{\Theta} \sum_k \sum_{\mathbf{a} \in \mathcal{A}} \prod P(\mathbf{a} \mid \mathbf{e}_k, \mathbf{f}_k \mid \Theta^{t-1}) \log P(\mathbf{f}_k, \mathbf{a} \mid \mathbf{e}_k, \Theta)$$

where Θ^t are the parameter values at the t'th iteration.

Model 2 as a Product of Multinomials

• The model can be written in the form

$$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod_{r} \Theta_{r}^{Count(\mathbf{f}, \mathbf{a}, \mathbf{e}, r)}$$

where the parameters Θ_r correspond to the $\mathbf{T}(f|e)$ and $\mathbf{D}(i|j,l,m)$ parameters

• To apply EM, we need to calculate expected counts

$$\overline{Count}(r) = \sum_{k} \sum_{\mathbf{a}} P(\mathbf{a} | \mathbf{e}_{\mathbf{k}}, \mathbf{f}_{\mathbf{k}}, \bar{\Theta}) Count(\mathbf{f}_{\mathbf{k}}, \mathbf{a}, \mathbf{e}_{\mathbf{k}}, r)$$

A Crucial Step in the EM Algorithm

- Say we have the following (e, f) pair:
 - $\mathbf{e} = And$ the program has been implemented

 $\mathbf{f} =$ Le programme a ete mis en application

• Given that f was generated according to Model 2, what is the probability that $a_1 = 2$? Formally:

$$Prob(a_1 = 2 \mid \mathbf{f}, \mathbf{e}) = \sum_{\mathbf{a}:a_1=2} P(\mathbf{a} \mid \mathbf{f}, \mathbf{e}, \overline{\Theta})$$

Calculating Expected Translation Counts

• One example:

$$\overline{Count}(\mathbf{T}(le|the)) = \sum_{(i,j,k)\in\mathcal{S}} P(a_j = i|\mathbf{e}_{\mathbf{k}}, \mathbf{f}_{\mathbf{k}}, \bar{\Theta})$$

where S is the set of all (i, j, k) triples such that $e_{k,i} = the$ and $f_{k,j} = le$

Calculating Expected Distortion Counts

• One example:

$$\overline{Count}(\mathbf{D}(i=5|j=6,l=10,m=11)) = \sum_{k\in\mathcal{S}} P(a_6=5|\mathbf{e_k},\mathbf{f_k},\bar{\Theta})$$

where S is the set of all values of k such that $length(\mathbf{e_k}) = 10$ and $length(\mathbf{f_k}) = 11$

Models 1 and 2 Have a Simple Structure

• We have
$$\mathbf{f} = \{f_1 \dots f_m\}, \mathbf{a} = \{a_1 \dots a_m\}, \text{ and }$$

$$P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}, l, m) = \prod_{j=1}^{m} P(a_j, f_j \mid \mathbf{e}, l, m)$$

where

$$P(a_j, f_j \mid \mathbf{e}, l, m) = \mathbf{D}(a_j \mid j, l, m) \mathbf{T}(f_j \mid e_{a_j})$$

• We can think of the $m(f_j, a_j)$ pairs as being generated independently

The Answer

$$Prob(a_{1} = 2 | \mathbf{f}, \mathbf{e}) = \sum_{\mathbf{a}:a_{1}=2} P(\mathbf{a} | \mathbf{f}, \mathbf{e}, l, m)$$
$$= \frac{\mathbf{D}(a_{1} = 2 | j = 1, l = 6, m = 7)\mathbf{T}(le | the)}{\sum_{i=0}^{l} \mathbf{D}(a_{1} = i | j = 1, l = 6, m = 7)\mathbf{T}(le | e_{i})}$$

Follows directly because the (a_j, f_j) pairs are independent:

$$P(a_{1} = 2 | \mathbf{f}, \mathbf{e}, l, m) = \frac{P(a_{1} = 2, f_{1} = le | f_{2} \dots f_{m}, \mathbf{e}, l, m)}{P(f_{1} = le | f_{2} \dots f_{m}, \mathbf{e}, l, m)}$$
(1)
$$= \frac{P(a_{1} = 2, f_{1} = le | \mathbf{e}, l, m)}{P(f_{1} = le | \mathbf{e}, l, m)}$$
(2)
$$= \frac{P(a_{1} = 2, f_{1} = le | \mathbf{e}, l, m)}{\sum_{i} P(a_{1} = i, f_{1} = le | \mathbf{e}, l, m)}$$

where (2) follows from (1) because $P(\mathbf{f}, \mathbf{a} \mid \mathbf{e}, l, m) = \prod_{j=1}^{m} P(a_j, f_j \mid \mathbf{e}, l, m)$

A General Result

$$Prob(a_j = i \mid \mathbf{f}, \mathbf{e}) = \sum_{\mathbf{a}: a_j = i} P(\mathbf{a} \mid \mathbf{f}, \mathbf{e}, l, m)$$
$$= \frac{\mathbf{D}(a_j = i \mid j, l, m) \mathbf{T}(f_j \mid e_i)}{\sum_{i'=0}^{l} \mathbf{D}(a_j = i' \mid j, l, m) \mathbf{T}(f_j \mid e_{i'})}$$

Alignment Probabilities have a Simple Solution!

• e.g., Say we have
$$l = 6, m = 7$$
,

e = And the program has been implemented f = Le programme a ete mis en application

• Probability of "mis" being connected to "the":

$$P(a_5 = 2 \mid \mathbf{f}, \mathbf{e}) = \frac{\mathbf{D}(a_5 = 2 \mid j = 5, l = 6, m = 7)\mathbf{T}(mis \mid the)}{Z}$$

where

$$Z = \mathbf{D}(a_5 = 0 \mid j = 5, l = 6, m = 7)\mathbf{T}(mis \mid NULL) + \mathbf{D}(a_5 = 1 \mid j = 5, l = 6, m = 7)\mathbf{T}(mis \mid And) + \mathbf{D}(a_5 = 2 \mid j = 5, l = 6, m = 7)\mathbf{T}(mis \mid the) + \mathbf{D}(a_5 = 3 \mid j = 5, l = 6, m = 7)\mathbf{T}(mis \mid program) + \dots$$

The EM Algorithm for Model 2

• Defi ne

- $\mathbf{e}[k]$ for $k = 1 \dots n$ is the k'th English sentence
- $\mathbf{f}[k]$ for $k = 1 \dots n$ is the k'th French sentence
- l[k] is the length of $\mathbf{e}[k]$
- m[k] is the length of $\mathbf{f}[k]$
- $\mathbf{e}[k, i]$ is the *i*'th word in $\mathbf{e}[k]$ $\mathbf{f}[k, j]$ is the *j*'th word in $\mathbf{f}[k]$
- Current parameters Θ^{t-1} are

 $\mathbf{T}(f \mid e) \quad \text{for all } f \in \mathcal{F}, e \in \mathcal{E}$ $\mathbf{D}(i \mid j, l, m)$

• We'll see how the EM algorithm re-estimates the T and D parameters

Step 1: Calculate the Alignment Probabilities

• Calculate an array of alignment probabilities (for (k = 1 ... n), (j = 1 ... m[k]), (i = 0 ... l[k])):

$$a[i, j, k] = P(a_j = i \mid \mathbf{e}[k], \mathbf{f}[k], \Theta^{t-1})$$
$$= \frac{\mathbf{D}(a_j = i \mid j, l, m) \mathbf{T}(f_j \mid e_i)}{\sum_{i'=0}^{l} \mathbf{D}(a_j = i' \mid j, l, m) \mathbf{T}(f_j \mid e_{i'})}$$
where $e_i = \mathbf{e}[k, i], f_j = \mathbf{f}[k, j]$, and $l = l[k], m = m[k]$

i.e., the probability of f[k, j] being aligned to e[k, i].

Step 2: Calculating the Expected Counts

• Calculate the translation counts

$$\begin{aligned} tcount(e,f) &= \sum_{\substack{i,j,k:\\ \mathbf{e}[k,i]=e,\\ \mathbf{f}[k,j]=f}} a[i,j,k] \end{aligned}$$

• tcount(e, f) is expected number of times that e is aligned with f in the corpus

Step 2: Calculating the Expected Counts

• Calculate the alignment counts

$$acount(i, j, l, m) = \sum_{\substack{k:\\l[k]=l, m[k]=m}} a[i, j, k]$$

• Here, acount(i, j, l, m) is expected number of times that e_i is aligned to f_j in English/French sentences of lengths l and m respectively

Step 3: Re-estimating the Parameters

• New translation probabilities are then defined as

$$\mathbf{T}(f \mid e) = \frac{tcount(e, f)}{\sum_{f} tcount(e, f)}$$

• New alignment probabilities are defined as

$$\mathbf{D}(i \mid j, l, m) = \frac{acount(i, j, l, m)}{\sum_{i} acount(i, j, l, m)}$$

This defines the mapping from Θ^{t-1} to Θ^t

A Summary of the EM Procedure

• Start with parameters Θ^{t-1} as

$$\mathbf{T}(f \mid e) \qquad \text{for all } f \in \mathcal{F}, e \in \mathcal{E}$$
$$\mathbf{D}(i \mid j, l, m)$$

• Calculate alignment probabilities under current parameters

$$a[i,j,k] = \frac{\mathbf{D}(a_j = i \mid j,l,m)\mathbf{T}(f_j \mid e_i)}{\sum_{i'=0}^{l} \mathbf{D}(a_j = i' \mid j,l,m)\mathbf{T}(f_j \mid e_{i'})}$$

- Calculate expected counts tcount(e, f), acount(i, j, l, m) from the alignment probabilities
- Re-estimate $\mathbf{T}(f \mid e)$ and $\mathbf{D}(i \mid j, l, m)$ from the expected counts

The Special Case of Model 1

• Start with parameters Θ^{t-1} as

 $\mathbf{T}(f \mid e) \qquad \text{for all } f \in \mathcal{F}, e \in \mathcal{E}$

(no alignment parameters)

• Calculate **alignment probabilities** under current parameters

$$a[i,j,k] = \frac{\mathbf{T}(f_j \mid e_i)}{\sum_{i'=0}^{l} \mathbf{T}(f_j \mid e_{i'})}$$

(because $D(a_j = i \mid j, l, m) = 1/(l+1)^m$ for all i, j, l, m).

- Calculate expected counts tcount(e, f)
- Re-estimate $\mathbf{T}(f \mid e)$ from the expected counts

Overview

- The Structure of IBM Models 1 and 2
- EM Training of Models 1 and 2
- Some examples of training Models 1 and 2
- Decoding

An Example of Training Models 1 and 2

Example will use following translations:

- e[1] = the dogf[1] = le chien
- e[2] = the catf[2] = le chat
- e[3] = the busf[3] = 1' autobus

NB: I won't use a NULL word e_0

	е	f	$\mathbf{T}(f \mid e)$
	the	le	0.23
	the	chien	0.2
	the	chat	0.11
	the	1'	0.25
	the	autobus	0.21
	dog	le	0.2
	dog	chien	0.16
	dog	chat	0.33
	dog	1'	0.12
Initial (random) parameters:	dog	autobus	0.18
	cat	le	0.26
	cat	chien	0.28
	cat	chat	0.19
	cat	1'	0.24
	cat	autobus	0.03
	bus	le	0.22
	bus	chien	0.05
	bus	chat	0.26
	bus	1'	0.19
	bus	autobus	0.27

Alignment probabilities:

i	j	k	a(i,j,k)
1	1	0	0.526423237959726
2	1	0	0.473576762040274
1	2	0	0.552517995605817
2	2	0	0.447482004394183
1	1	1	0.466532602066533
2	1	1	0.533467397933467
1	2	1	0.356364544422507
2	2	1	0.643635455577493
1	1	2	0.571950438336247
2	1	2	0.428049561663753
1	2	2	0.439081311724508
2	2	2	0.560918688275492

	e	f	tcount(e, f)
	the	le	0.99295584002626
	the	chien	0.552517995605817
	the	chat	0.356364544422507
	the	1'	0.571950438336247
	the	autobus	0.439081311724508
	dog	le	0.473576762040274
	dog	chien	0.447482004394183
	dog	chat	0
	dog	1'	0
Expected counts:	dog	autobus	0
	cat	le	0.533467397933467
	cat	chien	0
	cat	chat	0.643635455577493
	cat	1'	0
	cat	autobus	0
	bus	le	0
	bus	chien	0
	bus	chat	0
	bus	1'	0.428049561663753
	bus	autobus	0.560918688275492

e	f	old	new
the	le	0.23	0.34
the	chien	0.2	0.19
the	chat	0.11	0.12
the	1'	0.25	0.2
the	autobus	0.21	0.15
dog	le	0.2	0.51
dog	chien	0.16	0.49
dog	chat	0.33	0
dog	1'	0.12	0
dog	autobus	0.18	0
cat	le	0.26	0.45
cat	chien	0.28	0
cat	chat	0.19	0.55
cat	1'	0.24	0
cat	autobus	0.03	0
bus	le	0.22	0
bus	chien	0.05	0
bus	chat	0.26	0
bus	1'	0.19	0.43
bus	autobus	0.27	0.57

Old and new parameters:

e	f						
the	le	0.23	0.34	0.46	0.56	0.64	0.71
the	chien	0.2	0.19	0.15	0.12	0.09	0.06
the	chat	0.11	0.12	0.1	0.08	0.06	0.04
the	1'	0.25	0.2	0.17	0.15	0.13	0.11
the	autobus	0.21	0.15	0.12	0.1	0.08	0.07
dog	le	0.2	0.51	0.46	0.39	0.33	0.28
dog	chien	0.16	0.49	0.54	0.61	0.67	0.72
dog	chat	0.33	0	0	0	0	0
dog	1'	0.12	0	0	0	0	0
dog	autobus	0.18	0	0	0	0	0
cat	le	0.26	0.45	0.41	0.36	0.3	0.26
cat	chien	0.28	0	0	0	0	0
cat	chat	0.19	0.55	0.59	0.64	0.7	0.74
cat	1'	0.24	0	0	0	0	0
cat	autobus	0.03	0	0	0	0	0
bus	le	0.22	0	0	0	0	0
bus	chien	0.05	0	0	0	0	0
bus	chat	0.26	0	0	0	0	0
bus	1'	0.19	0.43	0.47	0.47	0.47	0.48
bus	autobus	0.27	0.57	0.53	0.53	0.53	0.52

	e	f	
	the	le	0.94
	the	chien	0
	the	chat	0
	the	1'	0.03
	the	autobus	0.02
	dog	le	0.06
	dog	chien	0.94
	dog	chat	0
	dog	1'	0
After 20 iterations:	dog	autobus	0
	cat	le	0.06
	cat	chien	0
	cat	chat	0.94
	cat	1'	0
	cat	autobus	0
	bus	le	0
	bus	chien	0
	bus	chat	0
	bus	1'	0.49
	bus	autobus	0.51

	e	f	$\mathbf{T}(f \mid e)$
	the	le	0.67
	the	chien	0
	the	chat	0
	the	1'	0.33
	the	autobus	0
	dog	le	0
	dog	chien	1
	dog	chat	0
	dog	1'	0
Model 2 has several local maxima – good one:	dog	autobus	0
	cat	le	0
	cat	chien	0
	cat	chat	1
	cat	1'	0
	cat	autobus	0
	bus	le	0
	bus	chien	0
	bus	chat	0
	bus	1'	0
	bus	autobus	1

	e	f	$\mathbf{T}(f \mid e)$
	the	le	0
	the	chien	0.4
	the	chat	0.3
	the	1'	0
	the	autobus	0.3
	dog	le	0.5
	dog	chien	0.5
	dog	chat	0
	dog	1'	0
Model 2 has several local maxima – bad one:	dog	autobus	0
	cat	le	0.5
	cat	chien	0
	cat	chat	0.5
	cat	1'	0
	cat	autobus	0
	bus	le	0
	bus	chien	0
	bus	chat	0
	bus	1'	0.5
	bus	autobus	0.5

	e	f	$\mathbf{T}(f \mid e)$
	the	le	0
	the	chien	0.33
	the	chat	0.33
	the	1'	0
	the	autobus	0.33
	dog	le	1
	dog	chien	0
	dog	chat	0
	dog	1'	0
another bad one:	dog	autobus	0
	cat	le	1
	cat	chien	0
	cat	chat	0
	cat	1'	0
	cat	autobus	0
	bus	le	0
	bus	chien	0
	bus	chat	0
	bus	1'	1
	bus	autobus	0

• Alignment parameters for good solution:

$$\mathbf{T}(i = 1 \mid j = 1, l = 2, m = 2) = 1$$

$$\mathbf{T}(i = 2 \mid j = 1, l = 2, m = 2) = 0$$

$$\mathbf{T}(i = 1 \mid j = 2, l = 2, m = 2) = 0$$

$$\mathbf{T}(i = 2 \mid j = 2, l = 2, m = 2) = 1$$

log probability = -1.91

• Alignment parameters for first bad solution:

$$\mathbf{T}(i=1 \mid j=1, l=2, m=2) = 0$$

$$\mathbf{T}(i=2 \mid j=1, l=2, m=2) = 1$$

$$\mathbf{T}(i=1 \mid j=2, l=2, m=2) = 0$$

$$\mathbf{T}(i=2 \mid j=2, l=2, m=2) = 1$$

log probability = -4.16

• Alignment parameters for second bad solution:

$$\mathbf{T}(i=1 \mid j=1, l=2, m=2) = 0$$

$$\mathbf{T}(i=2 \mid j=1, l=2, m=2) = 1$$

$$\mathbf{T}(i=1 \mid j=2, l=2, m=2) = 1$$

$$\mathbf{T}(i=2 \mid j=2, l=2, m=2) = 0$$

log probability = -3.30

Improving the Convergence Properties of Model 2

- Out of 100 random starts, only 60 converged to the best local maxima
- Model 1 converges to the same, global maximum every time (see the Brown et. al paper)
- Method in IBM paper: run Model 1 to estimate **T** parameters, then use these as the initial parameters for Model 2
- In 100 tests using this method, Model 2 converged to the correct point every time.

Overview

- The Structure of IBM Models 1 and 2
- EM Training of Models 1 and 2
- Some examples of training Models 1 and 2
- Decoding

Decoding

• Problem: for a given French sentence f, fi nd $\mathrm{argmax}_{\mathbf{e}} P(\mathbf{e}) P(\mathbf{f} \mid \mathbf{e})$

or the "Viterbi approaximation"

 $\operatorname{argmax}_{\mathbf{e},\mathbf{a}} P(\mathbf{e}) P(\mathbf{f},\mathbf{a} \mid \mathbf{e})$

Decoding

- Decoding is NP-complete (see (Knight, 1999))
- IBM papers describe a *stack-decoding* or A^* *search* method
- A recent paper on decoding:

Fast Decoding and Optimal Decoding for Machine Translation. Germann, Jahr, Knight, Marcu, Yamada. In ACL 2001.

- Introduces a *greedy* search method
- Compares the two methods to exact (integer-programming) solution

First Stage of the Greedy Method

• For each French word f_j , pick the English word e which maximizes

 $\mathbf{T}(e \mid f_j)$

(an inverse translation table $T(e \mid f)$ is required for this step)

• This gives us an initial alignment, e.g.,

Bien	intendu	,	il	parle	de	une	belle	victoire
Well	heard	,	it	talking	NULL	а	beautiful	victory

(Correct translation: quite naturally, he talks about a great victory)

Next Stage: Greedy Search

- First stage gives us an initial (e^0, a^0) pair
- Basic idea: define a set of local transformations that map an (e, a) pair to a new (e', a') pair
- Say Π(e, a) is the set of all (e', a') reachable from (e, a) by some transformation, then at each iteration take

$$(\mathbf{e}^{t}, \mathbf{a}^{t}) = \operatorname{argmax}_{(\mathbf{e}, \mathbf{a}) \in \Pi(\mathbf{e}^{t-1}, \mathbf{a}^{t-1})} P(\mathbf{e}) P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

i.e., take the highest probability output from results of all transformations

• Basic idea: iterate this process until convergence

- CHANGE(j, e):
 Changes translation of f_j from e_{a_j} into e
- Two possible cases (take $e_{old} = e_{a_j}$):
 - e_{old} is aligned to more than 1 word, or $e_{old} = NULL$ Place *e* at position in string that maximizes the alignment probability
 - e_{old} is aligned to exactly one word In this case, simply replace e_{old} with e
- Typically consider only (e, f) pairs such that e is in top 10 ranked translations for f under T(e | f) (an inverse table of probabilities T(e | f) is required this is described in Germann 2003)

 CHANGE2(j1, e1, j2, e2): Changes translation of f_{j1} from e_{aj1} into e1, and changes translation of f_{j2} from e_{aj2} into e2

• Just like performing $\mathsf{CHANGE}(j1,e1)$ and $\mathsf{CHANGE}(j2,e2)$ in sequence

- TranslateAndInsert(j, e1, e2): Implements CHANGE(j, e1), (i.e. Changes translation of f_j from e_{aj} into e1) and inserts e₂ at most likely point in the string
- Typically, e_2 is chosen from the English words which have high probability of being aligned to 0 French words

RemoveFertilityZero(i):
 Removes e_i, providing that e_i is aligned to nothing in the alignment

- SwapSegments(i1, i2, j1, j2): Swaps words $e_{i1} \dots e_{i2}$ with words e_{j1} and e_{j2}
- Note: the two segments cannot overlap

• JoinWords(i1, i2): Deletes English word at position i1, and links all French words that were linked to e_{i1} to e_{i2}

Bien intendu , il parle de une belle victoire
Well heard , it talking NULL a beautiful victory
↓
Bien intendu , il parle de une belle victoire
Well heard , it talks NULL a great victory

CHANGE2(5, talks, 8, great)

Bien intendu , il parle de une belle victoire
Well heard , it talks NULL a great victory
↓
Bien intendu , il parle de une belle victoire

Well understood , it talks about a great victory

CHANGE2(2, *understood*, 6, *about*)

Bien intendu , il parle de une belle victoire
Well understood , it talks about a great victory
↓
Bien intendu , il parle de une belle victoire
Well understood , he talks about a great victory

CHANGE(4, he)

Bien intendu , il parle de une belle victoire
Well understood , he talks about a great victory
↓
Bien intendu , il parle de une belle victoire
quite naturally , he talks about a great victory

CHANGE2(1, quite, 2, naturally)

An Exact Method Based on Integer Programming

Method from Germann et. al 2001:

• Integer programming problems

 $3.2x_1 + 4.7x_2 - 2.1x_3$ Minimize objective function

$$x_1 - 2.6x_3 > 5$$
 Subject to linear constraints
 $7.3x_2 > 7$

• Generalization of travelling salesman problem: Each town has a number of hotels; some hotels can be in multiple towns. Find the lowest cost tour of hotels such that each town is visited exactly once.

- In the MT problem:
 - Each city is a French word (all cities visited ⇒ all French words must be accounted for)
 - Each hotel is an English word matched with one or more French words
 - The "cost" of moving from hotel *i* to hotel *j* is a sum of a number of terms. E.g., the cost of choosing "not" after "what", and aligning it with "ne" and "pas" is

. . .

```
\log(bigram(not \mid what) + \log(\mathbf{T}(ne \mid not) + \log(\mathbf{T}(pas \mid not)))
```

An Exact Method Based on Integer Programming

- Say distance between hotels i and j is d_{ij};
 Introduce x_{ij} variables where x_{ij} = 1 if path from hotel i to hotel j is taken, zero otherwise
- Objective function: maximize

$$\sum_{i,j} x_{ij} d_{ij}$$

• All cities must be visited once \Rightarrow constraints

$$\forall \mathbf{c} \in \text{cities} \sum_{i \text{ located in } \mathbf{c}} \sum_{j} x_{ij} = 1$$

Every hotel must have equal number of incoming and outgoing edges ⇒

$$\forall i \sum_{j} x_{ij} = \sum_{j} x_{ji}$$

• Another constraint is added to ensure that the tour is fully connected