Graph-based Algorithms in NLP

Regina Barzilay

MIT

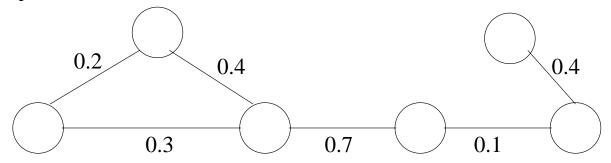
November, 2005

Graph-Based Algorithms in NLP

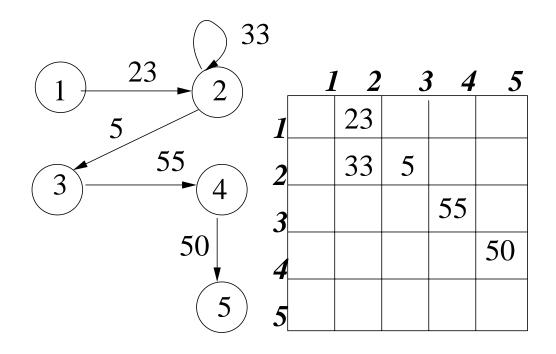
- In many NLP problems entities are connected by a range of relations
- Graph is a natural way to capture connections between entities
- Applications of graph-based algorithms in NLP:
 - Find entities that satisfy certain structural
 properties defined with respect to other entities
 - Find globally optimal solutions given relations between entities

Graph-based Representation

- Let G(V, E) be a weighted undirected graph
 - − V set of nodes in the graph
 - E set of weighted edges
- Edge weights w(u, v) define a measure of pairwise similarity between nodes u,v



Graph-based Representation



Examples of Graph-based Representations

Data	Directed?	Node	Edge
Web	yes	page	link
Citation Net	yes	citation	reference relation
Text	no	sent	semantic connectivity

Hubs and Authorities Algorithm (Kleinberg, 1998)

- **Application context:** information retrieval
- Task: retrieve documents relevant to a given query
- Naive Solution: text-based search
 - Some relevant pages omit query terms
 - Some irrelevant do include query terms

We need to take into account the authority of the page!

Analysis of the Link Structure

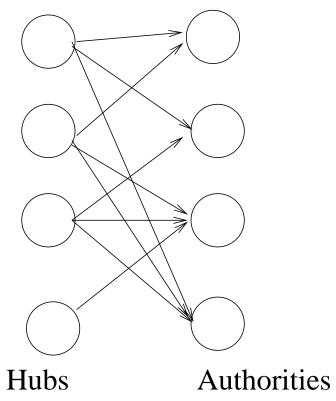
• **Assumption:** the creator of page p, by including a link to page q, has in some measure conferred authority in q

• Issues to consider:

- some links are not indicative of authority (e.g., navigational links)
- we need to find an appropriate balance between the criteria of relevance and popularity

Outline of the Algorithm

- Compute focused subgraphs given a query
- Iteratively compute hubs and authorities in the subgraph



Focused Subgraph

- Subgraph G[W] over $W \subseteq V$, where edges correspond to all the links between pages in W
- How to construct G_{σ} for a string σ ?
 - G_{σ} has to be relatively small
 - G_{σ} has to be rich in relevant pages
 - G_{σ} must contain most of the strongest authorities

Constructing a Focused Subgraph: Notations

Subgraph (σ, Eng, t, d)

 σ : a query string

Eng: a text-based search engine

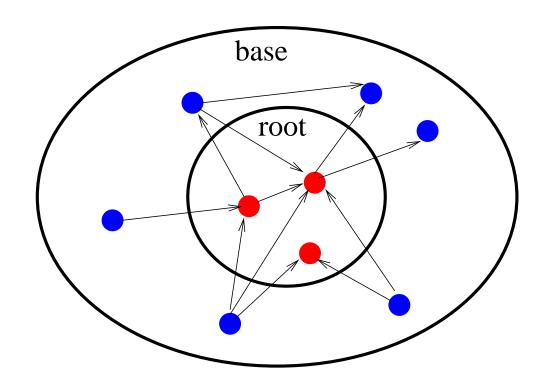
t,d: natural numbers

Let R_{σ} denote the top t results of Eng on σ

Constructing a Focused Subgraph: Algorithm

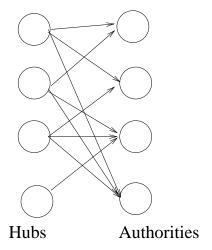
Set $S_c := R_{\sigma}$ For each page $p \in R_{\sigma}$ Let $\Gamma^+(p)$ denote the set of all pages p points to Let $\Gamma^-(p)$ denote the set of all pages pointing to p Add all pages in $\Gamma^+(p)$ to S_{σ} If $|\Gamma^-(p)| \leq d$ then Add all pages in $|\Gamma^-(p)|$ to S_{σ} Else Add an arbitrary set of d pages from $|\Gamma^-(p)|$ to S_{σ} End Return S_{σ}

Constructing a Focused Subgraph



Computing Hubs and Authorities

- Authorities should have considerable overlap in terms of pages pointing to them
- Hubs are pages that have links to multiple authoritative pages
- Hubs and authorities exhibit a mutually reinforcing relationship



An Iterative Algorithm

• For each page p, compute authority weight $x^{(p)}$ and hub weight $y^{(p)}$

$$-x^{(p)} \ge 0, x^{(p)} \ge 0$$

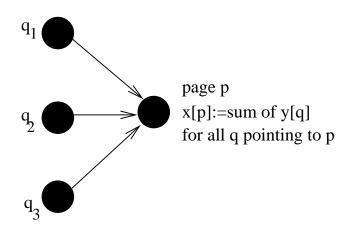
$$-\sum_{p\in s_{\sigma}}(x^{(p)})^2=1, \sum_{p\in s_{\sigma}}(y^{(p)})^2=1$$

Report top ranking hubs and authorities

I operation

Given $\{y^{(p)}\}$, compute:

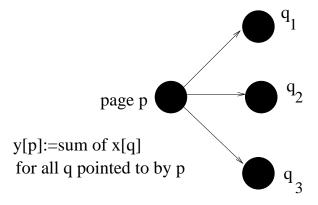
$$x^{(p)} \leftarrow \sum_{q:(q,p)\in E} y^{(p)}$$



O operation

Given $\{x^{(p)}\}$, compute:

$$y^{(p)} \leftarrow \sum_{q:(p,q)\in E} x^{(p)}$$



Algorithm:Iterate

```
Iterate (G,k) G: a collection of n linked paged
  k: a natural number
  Let z denote the vector (1, 1, 1, \dots, 1) \in \mathbb{R}^n
  Set x_0 := z
  Set y_0 := z
  For i = 1, 2, ..., k
    Apply the I operation to (x_{i-1}, y_{i-1}), obtaining new x-weights x'_i
    Apply the O operation to (x'_i, y_{i-1}), obtaining new y-weights y'_i
    Normalize x_i', obtaining x_i
    Normalize y_i', obtaining y_i
  Return (x_k, y_k)
```

Algorithm: Filter

Filter (G,k,c) G: a collection of n linked paged

k,c: natural numbers

 $(x_k, y_k) := Iterate(G, k)$

Report the pages with the c largest coordinates in x_k as authorities

Report the pages with the c largest coordinates in y_k as hubs

Convergence

Theorem: The sequence x_1, x_2, x_3 and y_1, y_2, y_3 converge.

- Let A be the adjacency matrix of g_{σ}
- Authorities are computed as the principal eigenvector of A^TA
- ullet Hubs are computed as the principal eigenvector of AA^T

Subgraph obtained from www.honda.com

http://www.honda.com

http://www.ford.com

http://www.eff.org/blueribbon.html

http://www.mckinley.com

http://www.netscape.com

http://www.linkexchange.com

http://www.toyota.com

Honda

Ford Motor Company

Campaign for Free Speech

Welcome to Magellan!

Welcome to Netscape!

LinkExchange — *Welcome*

Welcome to Toyota

Authorities obtained from www.honda.com

0.202	http://www.toyota.com	Welcome to Toyota
0.199	http://www.honda.com	Honda
0.192	http://www.ford.com	Ford Motor Company
0.173	http://www.bmwusa.com	BMW of North America, Inc.
0.162ht	tp://www.bmwusa.com	VOLVO
0.158	http://www.saturncars.com	Saturn Web Site
0.155	http://www.nissanmotors.com	NISSAN

PageRank Algorithm (Brin&Page, 1998)

Original Google ranking algorithm

- Similar idea to Hubs and Authorities
- Key differences:
 - Authority of each page is computed off-line
 - Query relevance is computed on-line
 - * Anchor text
 - * Text on the page
 - The prediction is based on the combination of authority and relevance

Intuitive Justification

From The Anatomy of a Large-Scale Hypertextual Web Search Engine (Brin&Page, 1998)

PageRank can be thought of as a model of used behaviour. We assume there is a "random surfer" who is given a web page at random and keeps clicking on links never hitting "back" but eventually get bored and starts on another random page. The probability that the random surfer visists a page is its PageRank. And, the d damping factor is the probability at each page the "random surfer" will get bored and request another random page.

Brin, S., and L. Page. "The Anatomy of a Large-Scale Hypertextual Web Search Engine." WWW7 / Computer Networks 30 no. 1-7 (1998): 107-117. Paper available at http://dbpubs.stanford.edu:8090/pub/1998-8.

PageRank Computation

Iterate PR(p) computation:

pages q_1, \ldots, q_n that point to page p d is a damping factor (typically assigned to 0.85) C(p) is out-degree of p

$$PR(p) = (1 - d) + d * (\frac{PR(q_1)}{C(q_1)} + \dots + \frac{PR(q_n)}{C(q_n)})$$

Notes on PageRank

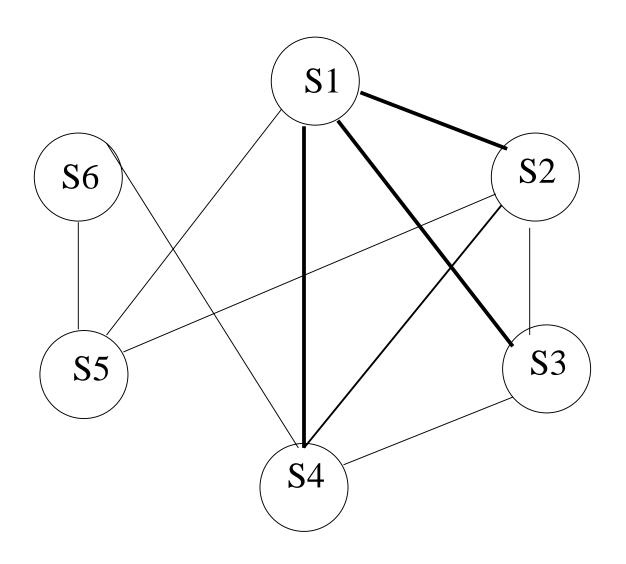
- PageRank forms a probability distribution over web pages
- PageRank corresponds to the principal eigenvector of the normalized link matrix of the web

Extractive Text Summarization

Task: Extract important information from a text

Figure removed for copyright reasons. Screenshots of several website text paragraphs.

Text as a Graph



Centrality-based Summarization(Radev)

- Assumption: The centrality of the node is an indication of its importance
- Representation: Connectivity matrix based on intra-sentence cosine similarity
- Extraction mechanism:
 - Compute PageRank score for every sentence u

$$PageRank(u) = \frac{(1-d)}{N} + d \sum_{v \in adj[u]} \frac{PageRank(v)}{deg(v)}$$

- , where N is the number of nodes in the graph
- Extract k sentences with the highest PageRanks score

Does it work?

- Evaluation: Comparison with human created summary
- Rouge Measure: Weighted n-gram overlap (similar to Bleu)

Method	Rouge score
Random	0.3261
Lead	0.3575
Degree	0.3595
PageRank	0.3666

Does it work?

- Evaluation: Comparison with human created summary
- Rouge Measure: Weighted n-gram overlap (similar to Bleu)

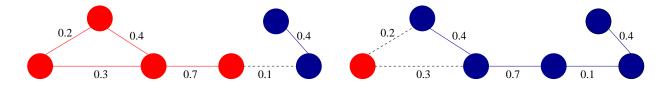
Method	Rouge score
Random	0.3261
Lead	0.3575
Degree	0.3595
PageRank	0.3666

Graph-Based Algorithms in NLP

- Applications of graph-based algorithms in NLP:
 - Find entities that satisfy certain structural
 properties defined with respect to other entities
 - Find globally optimal solutions given relations between entities

Min-Cut: Definitions

- Graph cut: partitioning of the graph into two disjoint sets of nodes A,B
- Graph cut weight: $\operatorname{cut}(A,B) = \sum_{u \in A, v \in B} w(u,v)$
 - i.e. sum of crossing edge weights
- Minimum Cut: the cut that minimizes cross-partition similarity



Finding Min-Cut

- The problem is polynomial time solvable for 2-class min-cut when the weights are positive
 - Use max-flow algorithm
- In general case, k way cut is NP-complete.
 - Use approximation algorithms (e.g., randomized algorithm by Karger)

MinCut first used for NLP applications by Pang&Lee'2004 (sentiment classification)

Min-Cut for Content Selection

Task: Determine a subset of database entries to be included in the generated document

			TEAN	A STAT C	COMPARIS	ON			
			Oakl	Oakland Raiders		New England Patriots			
1st Downs			19			22			
Total Ya	ards				338		379		
Passing					246		306		
Rushing					92			73	
Penaltie	S			16	-149			7-46	
3rd Dox	vn Conve	rsions			4-13			6-16	
4th Dov	vn Conve	rsions			0-0		0-1		
Turnovers				2 0					
Possess	ion			2	27:40 32:20			32:20	
			IND	OIVIDUA	L LEADER	RS			
	Oakla	nd Passi	ng			New I	England l	Passing	
	C/ATT	YDS	TD	INT				INT	
Collins	18/39	265	3	0	Brady	24/38	306	2	0
	Oaklaı	nd Rushi	ing		New England Rushing				
	CAR	YDS	TD	LG	G CAR YDS TD		TD	LG	
Jordan	18	17	0	14	Dillon	23	63	2	10
Crockett	3	20	-8	19	Faulk	5	11	0	4
	Oaklan	d Receiv	ing			New Er	ngland R	eceiving	
	REC	YDS	TD	LG		REC	YDS	TD	LG
Moss	5	130	1	73	Branch	7	99	1	29
Porter	3	48	0	27	Watson	2	55	0	35

Parallel Corpus for Text Generation

	Passing	
PLAYER Brunell Garcia	CP/AT YDS AVG 17/38 192 6.0 14/21 195 9.3	TD INT 0 0 1 0

Rushing						
PLAYER Suggs	REC YDS AVG 22 82 3.7	LG TD 25 1				
· · ·		23 1				

	Fumb	les		
PLAYER	FUM LO	OST F	REC	YDS
Coles	1	1	0	0
Portis	1	1	0	0
Davis	0	0	1	0
Little	0	0	1	0

Suggs rushed for 82 yards and scored a touchdown in the fourth quarter, leading the Browns to a 17-13 win over the Washington Redskins on Sunday. Jeff Garcia went 14-of-21 for 195 yards and a TD for the Browns, who didn't secure the win until Coles fumbled with 2:08 left. The Redskins (1-3) can pin their third straight loss on going just 1-for-11 on third downs, mental mistakes and a costly fumble by Clinton Por-"My fumble changed the momentum", Portis said. Brunell finished 17-of-38 for 192 **yards**, but was unable to get into any rhythm because Cleveland's defense shut down Portis. The Browns faked a field goal, but holder Derrick Frost was stopped short of a first down. Brunell then completed a 13-yard pass to Coles, who fumbled as he was being taken down and Browns safety Earl Little recovered.

Content Selection: Problem Formulation

- Input format: a set of entries from a relational database
 - "entry"="raw in a database"
- Training: *n* sets of database entries with associated selection labels

Oakland Rushing						
	CAR	YDS	TD	LG		
Jordan	18	17	0	14		
Crockett	3	20	-8	19		

Figure by MIT OCW.

• Testing: predict selection labels for a new set of entries

Simple Solution

Formulate content selection as a classification task:

- **Prediction:** {1,0}
- Representation of the problem:

Player	YDS	LG	TD	Selected
Dillon	63	10	2	1
Faulk	11	4	0	0

Goal: Learn classification function P(Y|X) that can classify unseen examples

$$X = \langle Smith, 28, 9, 1 \rangle$$
 $Y_1 = ?$

Potential Shortcoming: Lack of Coherence

- Sentences are classified in isolation
- Generated sentences may not be connected in a meaningful way

Example: An output of a system that automatically generates scientific papers (Stribling et al., 2005):

Active networks and virtual machines have a long history of collaborating in this manner. The basic tenet of this solution is the refinement of Scheme. The disadvantage of this type of approach, however, is that public-private key pair and red-black trees are rarely incompatible.

Enforcing Output Coherence

Sentences in a text are connected

The New England Patriots squandered a couple big leads. That was merely a setup for Tom Brady and Adam Vinatieri, who pulled out one of their typical last-minute wins.

Brady threw for 350 yards and three touchdowns before Vinatieri kicked a 29-yard field goal with 17 seconds left to lead injury-plagued New England past the Atlanta Falcons 31-28 on Sunday.

Simple classification approach cannot enforce coherence constraints

Constraints for Content Selection

Collective content selection: consider all the entries simultaneously

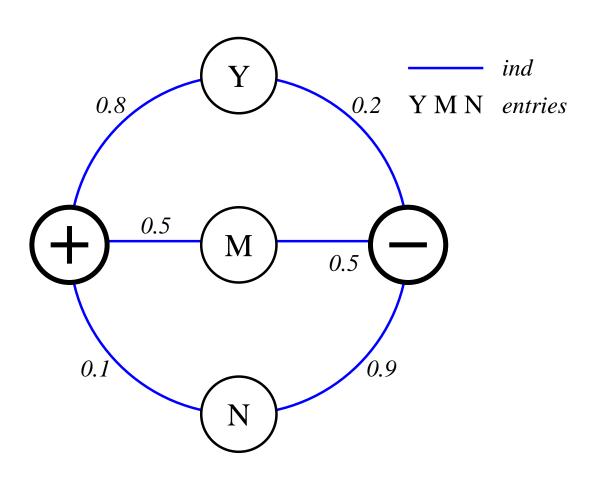
• Individual constraints:

3	Branch scores TD	7	10
---	------------------	---	----

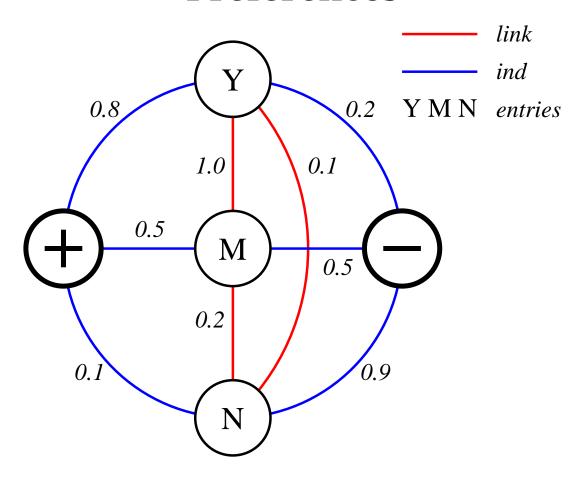
• Contextual constraints:

3	Brady passes to Branch	7	3
3	Branch scores TD	7	10

Individual Preferences



Combining Individual and Contextual Preferences



Collective Classification

$$egin{array}{c|c} x \in C_+ & ext{selected entities} \ ind_+(x) & ext{preference to be selected} \ link_L(x_i,x_j) & ext{x_i and x_j are connected by link of type L} \end{array}$$

Minimize penalty:

$$\sum_{x \in C_{+}} ind_{-}(x) + \sum_{x \in C_{-}} ind_{+}(x) + \sum_{L} \sum_{\substack{x_{i} \in C_{+} \\ x_{j} \in C_{-}}} link_{L}(x_{i}, x_{j})$$

Goal: Find globally optimal label assignment

Optimization Framework

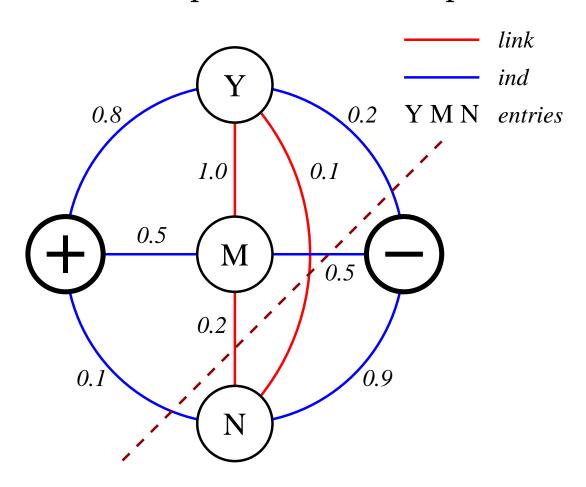
$$\sum_{x \in C_{+}} ind_{-}(x) + \sum_{x \in C_{-}} ind_{+}(x) + \sum_{L} \sum_{\substack{x_{i} \in C_{+} \\ x_{j} \in C_{-}}} link_{L}(x_{i}, x_{j})$$

Energy minimization framework (Besag, 1986, Pang&Lee, 2004)

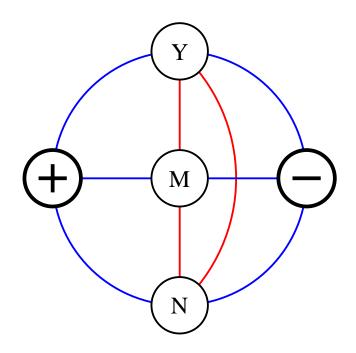
- Seemingly intractable
- Can be solved exactly in polynomial time (scores are positive) (Greig et al., 1989)

Graph-Based Formulation

Use max-flow to compute minimal cut partition



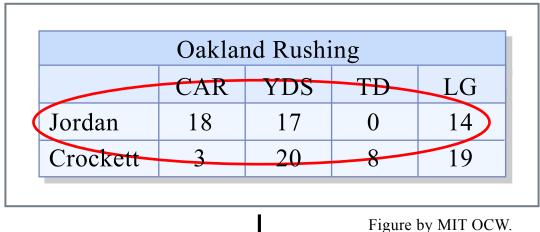
Learning Task



- Learning individual preferences
- Learning link structure

Learning Individual Preferences

Map attributes of a database entry to a feature vector



X=<Jordan, 18, 17, 0, 14>, Y=1 X=<Crockett, 3, 20, 8, 19>, Y=0

• Train a classifier to learn D(Y|X)

Contextual Constraints: Learning Link Structure

- Build on rich structural information available in database schema
 - Define entry links in terms of their database relatedness

Players from the winning team that had touchdowns in the same quarter

- Discover links automatically
 - Generate-and-prune approach

Construction of Candidate Links

- Link space:
 - Links based on attribute sharing
- Link type template: create $L_{i,j,k}$ for every entry type E_i and E_j , and for every shared attribute k

```
E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{Name}
E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{TD}
```

Link Filtering

 $E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{Name}$

 $E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{TD}$

New England Passing						
C/ATT YDS AVG TD INT						
T. Brady	24/38	306	8.1	2	0	

	New England Rushing						
	CAR YDS AVG TD LG						
C. Dillon	23 63 2.7 2 10						
K. Faulk	5	11	2.2	0	4		
T. Brady	3	-1	-0.3	0	0		
Team	31	73	2.4	2	10		

New England Passing					
C/ATT YDS AVG TD INT					
T. Brady	24/38	306	8.1	/2	0

New England Rushing							
CAR YDS AVG TD /I							
C. Dillon	23	63	2.7	2	10		
K. Faulk	5	11	2.2	0	4		
T. Brady	3	-1	-0.3	0	0		
Team	31	73	2.4	2	10		

Link Filtering

 $E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{Name}$

 $E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{TD}$

	New England Passing							
	C/ATT	YDS	AVG	TD	INT			
T. Brady	24/38	306	8.1	2	0			
	New England Rushing							
	CAR	YDS	AVG	TD	LG			
C. Dillon	23	63	2.7	2	10			
K. Faulk	5	11	2.2	0	4			
T. Brady	3	-1	-0.3	0	0			
Team	31	73	2.4	2	10			

New England Passing						
C/ATT YDS AVG TD INT						
T. Brady	24/38	306	8.1	/2	0	

N					
	CAR	YDS	AVG	TD	LG
C. Dillon	23	63	2.7	2	10
K. Faulk	5	11	2.2	0	4
T. Brady	3	-1	-0.3	0	0
Team	31	73	2.4	2	10

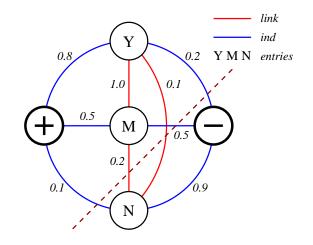
Link Filtering

$$E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{Name}$$
 $E_i = \text{Rushing}, E_j = \text{Passing}, \text{ and } k = \text{TD}$

Measure similarity in label distribution using χ^2 test

- Assume H_0 : labels of entries are independent
- Consider the joint label distribution of entry pairs from the training set
- H_0 is rejected if $\chi^2 > \tau$

Collective Content Selection



- Learning
 - Individual preferences
 - Link structure
- Inference
 - Minimal Cut Partitioning

Data

- Domain: American Football
- Data source: the official site of NFL
- Corpus: AP game recaps with corresponding databases for 2003 and 2004 seasons
 - Size: 468 recaps (436,580 words)
 - Average recap length: 46.8 sentences

Data: Preprocessing

- Anchor-based alignment (Duboue &McKeown, 2001, Sripada et al., 2001)
 - 7,513 aligned pairs
 - 7.1% database entries are verbalized
 - 31.7% sentences had a database entry
- Overall: 105, 792 entries
 - Training/Testing/Development: 83%, 15%, 2%

Results: Comparison with Human Extraction

- Precision (P): the percentage of extracted entries that appear in the text
- Recall (R): the percentage of entries appearing in the text that are extracted by the model
- F-measure: $F = 2 \frac{PR}{(P+R)}$

Method	P	R	F
Previous Methods			
Class Majority Baseline	29.4	68.19	40.09
Standard Classifier	44.88	62.23	49.75
Collective Model	52.71	76.50	60.15

Summary

- Graph-based Algorithms: Hubs and Authorities,
 Min-Cut
- Applications: information Retrieval, Summarization, Generation