6.864: Lecture 2, Fall 2005 Parsing and Syntax I

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Parsing (Syntactic Structure)

INPUT:

Boeing is located in Seattle.

OUTPUT:

Data for Parsing Experiments

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian Utilities had 1988 revenue of C\$ 1.16 billion , mainly from its natural gas and electric utility businesses in Alberta , where the company serves about 800,000 customers .

The Information Conveyed by Parse Trees

1) Part of speech for each word

$$(N = noun, V = verb, D = determiner)$$

2) Phrases

Noun Phrases (NP): "the burglar", "the apartment"

Verb Phrases (VP): "robbed the apartment"

Sentences (S): "the burglar robbed the apartment"

3) Useful Relationships

⇒ "the burglar" is the subject of "robbed"

An Example Application: Machine Translation

• English word order is subject - verb - object

• Japanese word order is subject – object – verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday

Japanese: Sources yesterday IBM Lotus bought that said

Syntax and Compositional Semantics

- Each syntactic non-terminal now has an associated semantic expression
- (We'll see more of this later in the course)

Context-Free Grammars

[Hopcroft and Ullman 1979]

A context free grammar $G = (N, \Sigma, R, S)$ where:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 0, X \in N, Y_i \in (N \cup \Sigma)$
- $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}$

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

_		
Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Left-Most Derivations

A left-most derivation is a sequence of strings $s_1 \dots s_n$, where

- $s_1 = S$, the start symbol
- $s_n \in \Sigma^*$, i.e. s_n is made up of terminal symbols only
- Each s_i for $i=2\dots n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \to \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

RULES USED

S

S

NP VP

RULES USED

 $S \to NP \; VP$

S NP VP DT N VP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow DT N$

S NP VP

DT N VP

the N VP

RULES USED

 $S \to NP \; VP$

 $NP \to DT \; N$

 $DT \rightarrow the$

S
NP VP
DT N VP
the N VP
the dog VP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow DT N$

 $DT \rightarrow the$

 $N \rightarrow dog$

S NP VP DT N VP

the N VP

the dog VP

the dog VB

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow DT N$

 $DT \rightarrow the$

 $N \rightarrow dog$

 $VP \to VB$

S
NP VP
DT N VP
the N VP
the dog VP
the dog VB
the dog laughs

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow DT N$

 $DT \rightarrow the$

 $N \rightarrow dog$

 $VP \rightarrow VB$

 $VB \rightarrow laughs$

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^*$ is in the *language* defined by the CFG if there is at least one derivation which yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

S

NP VP

RULES USED

 $S \to NP \; VP$

S NP VP he VP

RULES USED

$$\begin{array}{c} S \longrightarrow NP \; VP \\ NP \longrightarrow he \end{array}$$

S NP VP

he VP

he VP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

S

NP VP

he VP

he VP PP

he VB PP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \to VB \; PP$

S

NP VP

he VP

he VP PP

he VB PP PP

he drove PP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

S

NP VP

he VP

he VP PP

he VB PP PP

he drove PP PP

he drove down the street PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \rightarrow VB PP$

 $VB \rightarrow drove$

PP→ down the street

S

NP VP

he VP

he VP PP

he VB PP PP

he drove PP PP

he drove down the street PP

he drove down the street in the car

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VP \; PP$

 $VP \rightarrow VB PP$

 $VB \rightarrow drove$

PP→ down the street

PP→ in the car

S

NP VP

S NP VP he VP

RULES USED

$$\begin{array}{c} S \longrightarrow NP \; VP \\ NP \longrightarrow he \end{array}$$

S NP VP he VP he VB PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB\ PP$

S

NP VP

he VP

he VB PP

he drove PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB\ PP$

 $VB \to drove \\$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

 $PP \rightarrow down NP$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

he drove down NP PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

 $PP \rightarrow down NP$

 $NP \rightarrow NP PP$

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

he drove down NP PP

he drove down the street PP

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \to VB \; PP$

 $VB \rightarrow drove$

 $PP \rightarrow down NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow the street$

DERIVATION

S

NP VP

he VP

he VB PP

he drove PP

he drove down NP

he drove down NP PP

he drove down the street PP

he drove down the street in the car

RULES USED

 $S \to NP \; VP$

 $NP \rightarrow he$

 $VP \rightarrow VB PP$

 $VB \rightarrow drove$

 $PP \rightarrow down NP$

 $NP \to NP \; PP$

 $NP \rightarrow the street$

 $PP \rightarrow in the car$

The Problem with Parsing: Ambiguity

INPUT:

She announced a program to promote safety in trucks and vans

POSSIBLE OUTPUTS:

And there are more...

A Brief Overview of English Syntax

Parts of Speech:

Nouns

```
(Tags from the Brown corpus)

NN = singular noun e.g., man, dog, park

NNS = plural noun e.g., telescopes, houses, buildings

NNP = proper noun e.g., Smith, Gates, IBM
```

- Determiners
 DT = determiner e.g., the, a, some, every
- Adjectives

 JJ = adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

$$ar{N} \Rightarrow NN$$
 $ar{N} \Rightarrow NN$
 $ar{N} \Rightarrow NN$
 $ar{N} \Rightarrow JJ$
 $ar{N} \Rightarrow ar{N}$
 $ar{N} \Rightarrow ar{N}$
 $ar{N} \Rightarrow ar{N}$
 $ar{N} \Rightarrow DT$
 $ar{N}$

```
NN
            box
NN
            car
      \Rightarrow mechanic
NN
NN
      \Rightarrow pigeon
DT
            the
DT
      \Rightarrow
            a
JJ
            fast
      \Rightarrow metal
JJ
JJ
      \Rightarrow idealistic
JJ
      \Rightarrow clay
```

Generates:

a box, the box, the metal box, the fast car mechanic, ...

Prepositions, and Prepositional Phrases

Prepositions
 IN = preposition e.g., of, in, out, beside, as

An Extended Grammar

							JJ	\Rightarrow	fast
$ \bar{N} $	\rightarrow	NN	I				JJ	\Rightarrow	metal
	\Rightarrow		<u></u>	NN	\Rightarrow	box	JJ	\Rightarrow	idealistic
$ar{f N} \ ar{f N}$	\Rightarrow	NN	$\frac{N}{\bar{N}}$	NN	\Rightarrow	car	JJ	\Rightarrow	clay
	\Rightarrow	JJ —	$ar{f N} \ ar{f N}$	NN	\Rightarrow	mechanic			
N	\Rightarrow	N		NN	\Rightarrow	pigeon	IN	\Rightarrow	in
NP	\Rightarrow	DT	$\bar{\mathrm{N}}$,	pigeon	IN	\Rightarrow	under
DD		TNT	NID	DT	\Rightarrow	the	IN	\Rightarrow	of
PP	\Rightarrow		NP	DT	\Rightarrow	a	IN	\Rightarrow	on
\bar{N}	\Rightarrow	N	PP	I		l	IN	\Rightarrow	with
							IN	\Rightarrow	as

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, ...

Verbs, Verb Phrases, and Sentences

Basic Verb Types

```
Vi = Intransitive verb e.g., sleeps, walks, laughs
Vt = Transitive verb e.g., sees, saw, likes
Vd = Ditransitive verb e.g., gave
```

• Basic VP Rules

• Basic S Rule $S \rightarrow NP VP$

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car, gave the fast car mechanic the pigeon in the box, ...

Examples of S:

the man sleeps, the dog walks, the dog likes the mechanic, the dog in the box gave the mechanic the fast car,...

PPs Modifying Verb Phrases

A new rule:

 $VP \rightarrow VP PP$

New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, . . .

Complementizers, and SBARs

- Complementizers
 COMP = complementizer e.g., that
- SBAR \rightarrow COMP S

Examples:

that the man sleeps, that the mechanic saw the dog . . .

More Verbs

New Verb Types

```
V[5] e.g., said, reported
V[6] e.g., told, informed
V[7] e.g., bet
```

• New VP Rules

```
VP \rightarrow V[5] SBAR

VP \rightarrow V[6] NP SBAR

VP \rightarrow V[7] NP NP SBAR
```

Examples of New VPs:

said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

Coordination

A New Part-of-Speech:
 CC = Coordinator e.g., and, or, but

• New Rules

Sources of Ambiguity

• Part-of-Speech ambiguity

```
\begin{array}{ccc} NNS & \rightarrow & walks \\ Vi & \rightarrow & walks \end{array}
```

• Prepositional Phrase Attachment the fast car mechanic under the pigeon in the box

Two analyses for: John was believed to have been shot by Bill

Sources of Ambiguity: Noun Premodifiers

• Noun premodifiers:

A Funny Thing about the Penn Treebank

Leaves NP premodifier structure flat, or underspecified:

A Probabilistic Context-Free Grammar

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

• Probability of a tree with rules $\alpha_i \to \beta_i$ is $\prod_i P(\alpha_i \to \beta_i | \alpha_i)$

DERIVATION S

RULES USED

PROBABILITY

DERIVATION

RULES USED

PROBABILITY

S

NP VP

 $S \to NP \; VP$

1.0

DERIVATION

RULES USED

PROBABILITY

S

NP VP

DT N VP

 $S \to NP \ VP$

 $NP \to DT \; N$

0.3

1.0

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \to DT \; N$	0.3
DT N VP	$DT \rightarrow the$	1.0

the N VP

DERIVATION

RULES USED

PROBABILITY

S
NP VP
DT N VP
the N VP
the dog VP

 $\begin{array}{lll} S \rightarrow NP \ VP & 1.0 \\ NP \rightarrow DT \ N & 0.3 \\ DT \rightarrow the & 1.0 \\ N \rightarrow dog & 0.1 \end{array}$

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \to DT \; N$	0.3
DT N VP	$DT \rightarrow the$	1.0
the N VP	$N \rightarrow dog$	0.1
the dog VP	$VP \to VB$	0.4
the dog VB		

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$NP \to DT \; N$	0.3
DT N VP	$DT \rightarrow the$	1.0
the N VP	$N \rightarrow dog$	0.1
the dog VP	$VP \rightarrow VB$	0.4
the dog VB	$VB \rightarrow laughs$	0.5
the dog laughs		

TOTAL PROBABILITY = $1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$

Properties of PCFGs

- Assigns a probability to each *left-most derivation*, or parsetree, allowed by the underlying CFG
- Say we have a sentence S, set of derivations for that sentence is $\mathcal{T}(S)$. Then a PCFG assigns a probability to each member of $\mathcal{T}(S)$. i.e., we now have a ranking in order of probability.
- \bullet The probability of a string S is

$$\sum_{T \in \mathcal{T}(S)} P(T, S)$$

Deriving a PCFG from a Corpus

- Given a set of example trees, the underlying CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$P_{ML}(\alpha \to \beta \mid \alpha) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

• If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

PCFGs

[Booth and Thompson 73] showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

- 1. The rule probabilities define conditional distributions over the different ways of rewriting each non-terminal.
- 2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a finite number of steps is 1. (This condition is not really a practical concern.)

Algorithms for PCFGs

- Given a PCFG and a sentence S, define $\mathcal{T}(S)$ to be the set of trees with S as the yield.
- Given a PCFG and a sentence S, how do we find

$$\arg\max_{T\in\mathcal{T}(S)}P(T,S)$$

• Given a PCFG and a sentence S, how do we find

$$P(S) = \sum_{T \in \mathcal{T}(S)} P(T, S)$$

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $-X \rightarrow Y_1Y_2 \text{ for } X \in \mathbb{N}, \text{ and } Y_1, Y_2 \in \mathbb{N}$
 - $-X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

• Given a PCFG and a sentence S, how do we find

$$\max_{T \in \mathcal{T}(S)} P(T, S)$$

• Notation:

$$n=$$
 number of words in the sentence N_k for $k=1\ldots K$ is k 'th non-terminal w.l.g., $N_1=S$ (the start symbol)

- Defi ne a dynamic programming table
 - $\pi[i, j, k] =$ maximum probability of a constituent with non-terminal N_k spanning words $i \dots j$ inclusive
- Our goal is to calculate $\max_{T \in \mathcal{T}(S)} P(T, S) = \pi[1, n, 1]$

A Dynamic Programming Algorithm

• Base case definition: for all $i = 1 \dots n$, for $k = 1 \dots K$

$$\pi[i, i, k] = P(N_k \to w_i \mid N_k)$$

(note: define $P(N_k \to w_i \mid N_k) = 0$ if $N_k \to w_i$ is not in the grammar)

• Recursive definition: for all $i = 1 \dots n$, $j = (i + 1) \dots n$, $k = 1 \dots K$,

$$\pi[i, j, k] = \max_{\substack{i \le s < j \\ 1 \le l \le K}} \{P(N_k \to N_l N_m \mid N_k) \times \pi[i, s, l] \times \pi[s + 1, j, m]\}$$

(note: define $P(N_k \to N_l N_m \mid N_k) = 0$ if $N_k \to N_l N_m$ is not in the grammar)

Initialization:

For i = 1 ... n, k = 1 ... K

$$\pi[i, i, k] = P(N_k \to w_i | N_k)$$

Main Loop:

```
For length = 1 ... (n-1), i = 1 ... (n-1), k = 1 ... K
   j \leftarrow i + length
   max \leftarrow 0
   For s = i \dots (j - 1),
   For N_l, N_m such that N_k \to N_l N_m is in the grammar
      prob \leftarrow P(N_k \rightarrow N_l N_m) \times \pi[i, s, l] \times \pi[s + 1, i, m]
      If prob > max
          max \leftarrow prob
         //Store backpointers which imply the best parse
          Split(i, j, k) = \{s, l, m\}
   \pi[i,j,k] = max
```

A Dynamic Programming Algorithm for the Sum

• Given a PCFG and a sentence S, how do we find

$$\sum_{T \in \mathcal{T}(S)} P(T, S)$$

• Notation:

$$n=$$
 number of words in the sentence N_k for $k=1\ldots K$ is k 'th non-terminal w.l.g., $N_1=S$ (the start symbol)

• Defi ne a dynamic programming table

 $\pi[i, j, k] = \text{sum of probability of parses with root label } N_k$ spanning words $i \dots j$ inclusive

• Our goal is to calculate $\sum_{T \in \mathcal{T}(S)} P(T, S) = \pi[1, n, 1]$

A Dynamic Programming Algorithm for the Sum

• Base case definition: for all $i = 1 \dots n$, for $k = 1 \dots K$

$$\pi[i, i, k] = P(N_k \to w_i \mid N_k)$$

(note: define $P(N_k \to w_i \mid N_k) = 0$ if $N_k \to w_i$ is not in the grammar)

• Recursive definition: for all $i = 1 \dots n$, $j = (i + 1) \dots n$, $k = 1 \dots K$,

$$\pi[i, j, k] = \sum_{\substack{i \leq s < j \\ 1 \leq l \leq K \\ 1 \leq m \leq K}} \{P(N_k \to N_l N_m \mid N_k) \times \pi[i, s, l] \times \pi[s + 1, j, m]\}$$

(note: define $P(N_k \to N_l N_m \mid N_k) = 0$ if $N_k \to N_l N_m$ is not in the grammar)

Initialization:

For i = 1 ... n, k = 1 ... K

$$\pi[i, i, k] = P(N_k \to w_i | N_k)$$

Main Loop:

```
For length = 1 \dots (n-1), i = 1 \dots (n-1ength), k = 1 \dots K
j \leftarrow i + length
sum \leftarrow 0
For s = i \dots (j-1),
For N_l, N_m such that N_k \rightarrow N_l N_m is in the grammar
prob \leftarrow P(N_k \rightarrow N_l N_m) \times \pi[i, s, l] \times \pi[s+1, j, m]
sum \leftarrow sum + prob
\pi[i, j, k] = sum
```

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Weaknesses of PCFGs

- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies

$$\begin{array}{lll} \mathsf{PROB} = & P(\mathsf{S} \to \mathsf{NP} \ \mathsf{VP} \ | \ \mathsf{S}) & \times P(\mathsf{NNP} \to IBM \ | \ \mathsf{NNP}) \\ & \times P(\mathsf{VP} \to \mathsf{V} \ \mathsf{NP} \ | \ \mathsf{VP}) & \times P(\mathsf{Vt} \to bought \ | \ \mathsf{Vt}) \\ & \times P(\mathsf{NP} \to \mathsf{NNP} \ | \ \mathsf{NP}) & \times P(\mathsf{NNP} \to Lotus \ | \ \mathsf{NNP}) \\ & \times P(\mathsf{NP} \to \mathsf{NNP} \ | \ \mathsf{NP}) & \end{array}$$

Another Case of PP Attachment Ambiguity

	Rules		Rules
(a)	$S \rightarrow NP VP$	(b)	$S \rightarrow NP VP$
	$NP \to NNS$		$NP \rightarrow NNS$
	$\mathbf{VP} \rightarrow \mathbf{VP} \ \mathbf{PP}$		$NP \rightarrow NP PP$
	$VP \rightarrow VBD NP$		$VP \rightarrow VBD NP$
	$NP \to NNS$		$NP \rightarrow NNS$
	$PP \to IN \ NP$		$PP \rightarrow IN NP$
	$NP \to DT \; NN$		$NP \rightarrow DT NN$
	$NNS \rightarrow workers$		$NNS \rightarrow workers$
	$VBD \rightarrow dumped$		$VBD \rightarrow dumped$
	$NNS \rightarrow sacks$		$NNS \rightarrow sacks$
	$IN \rightarrow into$		$IN \rightarrow into$
	$DT \rightarrow a$		$DT \rightarrow a$
	$NN \rightarrow bin$		$NN \rightarrow bin$

If $P(NP \rightarrow NP PP \mid NP) > P(VP \rightarrow VP PP \mid VP)$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity

	Rules
	$NP \rightarrow NP CC NP$
	$NP \rightarrow NP PP$
	$NP \rightarrow NNS$
	$PP \rightarrow IN NP$
(a)	$NP \rightarrow NNS$
(a)	$NP \rightarrow NNS$
	$NNS \rightarrow dogs$
	$IN \rightarrow in$
	$NNS \rightarrow houses$
	$CC \rightarrow and$
	$NNS \rightarrow cats$

Rules
$NP \rightarrow NP CC NP$
$NP \rightarrow NP PP$
$NP \to NNS$
$PP \rightarrow IN NP$
$NP \to NNS$
$NP \to NNS$
$NNS \rightarrow dogs$
$IN \rightarrow in$
$NNS \rightarrow houses$
$CC \rightarrow and$
$NNS \rightarrow cats$

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.

Structural Preferences: Close Attachment

Previous example: John was believed to have been shot by Bill

Here the low attachment analysis (Bill does the *shooting*) contains same rules as the high attachment analysis (Bill does the *believing*), so the two analyses receive same probability.

References

- [Altun, Tsochantaridis, and Hofmann, 2003] Altun, Y., I. Tsochantaridis, and T. Hofmann. 2003. Hidden Markov Support Vector Machines. In *Proceedings of ICML 2003*.
- [Bartlett 1998] P. L. Bartlett. 1998. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Transactions on Information Theory, 44(2): 525-536, 1998.
- [Bod 98] Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge University Press.
- [Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to abstract languages. *IEEE Transactions on Computers*, C-22(5), pages 442–450.
- [Borthwick et. al 98] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting Diverse Knowledge Sources via Maximum Entropy in Named Entity Recognition. *Proc. of the Sixth Workshop on Very Large Corpora*.
- [Collins and Duffy 2001] Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural Language. In *Proceedings of NIPS 14*.
- [Collins and Duffy 2002] Collins, M. and Duffy, N. (2002). New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In *Proceedings* of ACL 2002.
- [Collins 2002a] Collins, M. (2002a). Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with the Perceptron Algorithm. In *Proceedings of EMNLP 2002*.
- [Collins 2002b] Collins, M. (2002b). Parameter Estimation for Statistical Parsing Models: Theory and Practice of Distribution-Free Methods. To appear as a book chapter.

- [Crammer and Singer 2001a] Crammer, K., and Singer, Y. 2001a. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. In *Journal of Machine Learning Research*, 2(Dec):265-292.
- [Crammer and Singer 2001b] Koby Crammer and Yoram Singer. 2001b. Ultraconservative Online Algorithms for Multiclass Problems In *Proceedings of COLT 2001*.
- [Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the Perceptron Algorithm. In *Machine Learning*, 37(3):277–296.
- [Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning. *Journal of Computer and System Sciences*, 50(3):551-573, June 1995.
 [Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. *Introduction to automata*
- [Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. *Introduction to automata theory, languages, and computation*. Reading, Mass.: Addison–Wesley.
- [Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators for stochastic 'unification-based' grammars. In *Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics*. San Francisco: Morgan Kaufmann.
- [Lafferty et al. 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fi elds: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-01, pages 282-289, 2001.
- [Littlestone and Warmuth, 1986] Littlestone, N., and Warmuth, M. 1986. Relating data compression and learnability. *Technical report, University of California, Santa Cruz*.
- [MSM93] Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus of english: The Penn treebank. *Computational Linguistics*, 19, 313-330.
- [McCallum et al. 2000] McCallum, A., Freitag, D., and Pereira, F. (2000) Maximum entropy markov models for information extraction and segmentation. In *Proceedings of ICML 2000*.

- [Miller et. al 2000] Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. 2000. A Novel Use of Statistical Parsing to Extract Information from Text. In *Proceedings of ANLP 2000*.
- [Ramshaw and Marcus 95] Ramshaw, L., and Marcus, M. P. (1995). Text Chunking Using Transformation-Based Learning. In *Proceedings of the Third ACL Workshop on Very Large Corpora*, Association for Computational Linguistics, 1995.
- [Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In *Proceedings of the empirical methods in natural language processing conference*.
- [Schapire et al., 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods. *The Annals of Statistics*, 26(5):1651-1686.
- [Zhang, 2002] Zhang, T. 2002. Covering Number Bounds of Certain Regularized Linear Function Classes. In *Journal of Machine Learning Research*, 2(Mar):527-550, 2002.