6.864: Lecture 2, Fall 2005 Parsing and Syntax I

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Parsing (Syntactic Structure)

INPUT:
Boeing is located in Seattle.
OUTPUT:

Data for Parsing Experiments

- Penn WSJ Treebank $=50,000$ sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian Utilities had 1988 revenue of C $\$ 1.16$ billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers .

The Information Conveyed by Parse Trees

1) Part of speech for each word

$$
\text { (} \mathrm{N}=\text { noun, } \mathrm{V}=\text { verb, } \mathrm{D}=\text { determiner })
$$

2) Phrases

Noun Phrases (NP): "the burglar", "the apartment"
Verb Phrases (VP): "robbed the apartment"
Sentences (S): "the burglar robbed the apartment"
3) Useful Relationships

\Rightarrow "the burglar" is the subject of "robbed"

An Example Application: Machine Translation

- English word order is
subject - verb - object
- Japanese word order is subject-object - verb
\(\left.\begin{array}{ll}English: \& IBM bought Lotus

Japanese: \& IBM Lotus bought\end{array}\right]\)| English: | Sources said that IBM bought Lotus yesterday
 Japanese: |
| :--- | :--- |
| Sources yesterday IBM Lotus bought that said | |

Syntax and Compositional Semantics

- Each syntactic non-terminal now has an associated semantic expression
- (We'll see more of this later in the course)

Context-Free Grammars

[Hopcroft and Ullman 1979]

A context free grammar $G=(N, \Sigma, R, S)$ where:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules of the form $X \rightarrow Y_{1} Y_{2} \ldots Y_{n}$ for $n \geq 0, X \in N, Y_{i} \in(N \cup \Sigma)$
- $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

$N=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{PP}, \mathrm{DT}, \mathrm{Vi}, \mathrm{Vt}, \mathrm{NN}, \mathrm{IN}\}$
$S=\mathrm{S}$
$\Sigma=\{$ sleeps, saw, man, woman, telescope, the, with, in $\}$

$R=$| S | \Rightarrow | NP | VP |
| :--- | :--- | :--- | :--- |
| VP | \Rightarrow | Vi | |
| VP | \Rightarrow | Vt | NP |
| VP | \Rightarrow | VP | PP |
| NP | \Rightarrow | DT | NN |
| NP | \Rightarrow | NP | PP |
| PP | \Rightarrow | IN | NP |

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{DT}=$ determiner, $\mathrm{Vi}=$ intransitive verb, $\mathrm{Vt}=$ transitive verb, $\mathrm{NN}=$ noun, $\mathrm{IN}=$ preposition

Left-Most Derivations

A left-most derivation is a sequence of strings $s_{1} \ldots s_{n}$, where

- $s_{1}=S$, the start symbol
- $s_{n} \in \Sigma^{*}$, i.e. s_{n} is made up of terminal symbols only
- Each s_{i} for $i=2 \ldots n$ is derived from s_{i-1} by picking the leftmost non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]
Representation of a derivation as a tree:

DERIVATION
S

RULES USED

DERIVATION
 S
 NP VP

RULES USED
 S \rightarrow NP VP

DERIVATION
 S
 NP VP
 DT N VP

DERIVATION
S
NP VP
DT N VP
the N VP

RULES USED
 $\mathrm{S} \rightarrow$ NP VP
 $\mathrm{NP} \rightarrow$ DT N
 DT \rightarrow the

DERIVATION
S
NP VP
DT N VP
the N VP
the dog VP

DERIVATION
S
NP VP
DT N VP
the N VP
the $\operatorname{dog} \mathrm{VP}$ the dog VB

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ DT N
DT \rightarrow the
$\mathrm{N} \rightarrow$ dog
$\mathrm{VP} \rightarrow \mathrm{VB}$

DERIVATION

S
NP VP
DT N VP
the N VP
the $\operatorname{dog} \mathrm{VP}$ the dog VB the dog laughs

RULES USED

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ DT N
DT \rightarrow the
$\mathrm{N} \rightarrow \operatorname{dog}$
$\mathrm{VP} \rightarrow \mathrm{VB}$
VB \rightarrow laughs

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^{*}$ is in the language defined by the CFG if there is at least one derivation which yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

DERIVATION S
NP VP

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP

DERIVATION S
NP VP
he VP

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ he

DERIVATION
S
NP VP
he VP
he VP PP

RULES USED
S \rightarrow NP VP
$\mathrm{NP} \rightarrow$ he
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP

$$
\begin{aligned}
& \text { RULES USED } \\
& \mathrm{S} \rightarrow \text { NP VP } \\
& \text { NP } \rightarrow \text { he } \\
& \text { VP } \rightarrow \text { VP PP } \\
& \text { VP } \rightarrow \text { VB PP }
\end{aligned}
$$

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP
he drove PP PP

RULES USED
S \rightarrow NP VP
$\mathrm{NP} \rightarrow$ he
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP
$\mathrm{VP} \rightarrow \mathrm{VB}$ PP
$\mathrm{VB} \rightarrow$ drove

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP
he drove PP PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VP PP
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
$\mathrm{PP} \rightarrow$ down the street
he drove down the street PP

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP
he drove PP PP
he drove down the street PP
he drove down the street in the car

RULES USED
S \rightarrow NP VP
$\mathrm{NP} \rightarrow$ he
$V P \rightarrow V P$ PP
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
$\mathrm{PP} \rightarrow$ down the street
$\mathrm{PP} \rightarrow$ in the car

DERIVATION S
NP VP

RULES USED
$S \rightarrow$ NP VP

DERIVATION S
NP VP
he VP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he

DERIVATION
S
NP VP
he VP
he VB PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
$\mathrm{VP} \rightarrow \mathrm{VB}$ PP

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP

RULES USED
S \rightarrow NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP

DERIVATION	RULES USED
S	$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP VP	$\mathrm{NP} \rightarrow$ he
he VP	$\mathrm{VP} \rightarrow$ VB PP
he VB PP	$\mathrm{VB} \rightarrow$ drove
he drove PP	$\mathrm{PP} \rightarrow$ down NP
he drove down NP	$\mathrm{NP} \rightarrow$ NP PP
he drove down NP PP	

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP
$\mathrm{NP} \rightarrow \mathrm{NP}$ PP

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP
he drove down NP PP
he drove down the street PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP
$\mathrm{NP} \rightarrow$ NP PP
$\mathrm{NP} \rightarrow$ the street

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP
he drove down NP PP
he drove down the street PP
he drove down the street in the car

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP
$\mathrm{NP} \rightarrow \mathrm{NP}$ PP
$\mathrm{NP} \rightarrow$ the street
PP \rightarrow in the car

The Problem with Parsing: Ambiguity

INPUT:
She announced a program to promote safety in trucks and vans
\Downarrow

POSSIBLE OUTPUTS:

And there are more...

A Brief Overview of English Syntax

Parts of Speech:

- Nouns
(Tags from the Brown corpus)
NN = singular noun e.g., man, dog, park
NNS = plural noun e.g., telescopes, houses, buildings
NNP = proper noun e.g., Smith, Gates, IBM
- Determiners

DT $=$ determiner e.g., the, a, some, every

- Adjectives
$\mathrm{JJ}=$ adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

$$
\begin{array}{lll}
\text { NN } & \Rightarrow \text { box } \\
\text { NN } & \Rightarrow & \text { car } \\
\text { NN } & \Rightarrow & \text { mechanic } \\
\text { NN } & \Rightarrow \text { pigeon } \\
& \\
\text { DT } & \Rightarrow \text { the } \\
\text { DT } & \Rightarrow \text { a } \\
& \\
\text { JJ } & \Rightarrow \text { fast } \\
\text { JJ } & \Rightarrow & \text { metal } \\
\text { JJ } & \Rightarrow \text { idealistic } \\
\text { JJ } & \Rightarrow \text { clay }
\end{array}
$$

Generates:
a box, the box, the metal box, the fast car mechanic, ...

Prepositions, and Prepositional Phrases

- Prepositions
IN = preposition
e.g., of, in, out, beside, as

An Extended Grammar

Generates:
in a box, under the box, the fast car mechanic under the pigeon in the box, \ldots

Verbs, Verb Phrases, and Sentences

- Basic Verb Types

$$
\begin{array}{ll}
\mathrm{Vi}=\text { Intransitive verb } & \text { e.g., sleeps, walks, laughs } \\
\mathrm{Vt}=\text { Transitive verb } & \text { e.g., sees, saw, likes } \\
\mathrm{Vd}=\text { Ditransitive verb } & \text { e.g., gave }
\end{array}
$$

- Basic VP Rules

VP \rightarrow Vi
$\mathrm{VP} \rightarrow \mathrm{Vt} \quad \mathrm{NP}$
$\mathrm{VP} \rightarrow \mathrm{Vd} \mathrm{NP} \quad \mathrm{NP}$

- Basic S Rule
$\mathrm{S} \rightarrow \mathrm{NP}$ VP

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car, gave the fast car mechanic the pigeon in the box, ...

Examples of S:

the man sleeps, the dog walks, the dog likes the mechanic, the dog in the box gave the mechanic the fast car,. . .

PPs Modifying Verb Phrases

A new rule:

$$
V P \quad \rightarrow \quad V P \quad P P
$$

New examples of VP:
sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, ...

Complementizers, and SBARs

- Complementizers

COMP = complementizer e.g., that

- SBAR

SBAR \rightarrow COMP S

Examples:

that the man sleeps, that the mechanic saw the $\operatorname{dog} \ldots$

More Verbs

- New Verb Types

$$
\begin{array}{ll}
\text { V[5] } & \text { e.g., said, reported } \\
\text { V[6] } & \text { e.g., told, informed } \\
\text { V[7] } & \text { e.g., bet }
\end{array}
$$

- New VP Rules

$$
\begin{array}{llllll}
\text { VP } & \rightarrow & \text { V[5] } & \text { SBAR } & & \\
\text { VP } & \rightarrow & \text { V[6] } & \text { NP } & \text { SBAR } & \\
\text { VP } & \rightarrow & \text { V[7] } & \text { NP } & \text { NP } & \text { SBAR }
\end{array}
$$

Examples of New VPs:

said that the man sleeps
told the dog that the mechanic likes the pigeon bet the pigeon $\$ 50$ that the mechanic owns a fast car

Coordination

- A New Part-of-Speech:

CC = Coordinator e.g., and, or, but

- New Rules

NP	\rightarrow	NP	CC	NP
$\overline{\mathrm{N}}$	\rightarrow	$\overline{\mathrm{N}}$	CC	$\overline{\mathrm{N}}$
VP	\rightarrow	VP	CC	VP
S	\rightarrow	S	CC	S
SBAR	\rightarrow	SBAR	CC	SBAR

Sources of Ambiguity

- Part-of-Speech ambiguity

NNS \rightarrow walks
Vi $\quad \rightarrow$ walks

- Prepositional Phrase Attachment the fast car mechanic under the pigeon in the box

Two analyses for: John was believed to have been shot by Bill

Sources of Ambiguity: Noun Premodifiers

- Noun premodifiers:

A Funny Thing about the Penn Treebank

Leaves NP premodifier structure flat, or underspecified:

A Probabilistic Context-Free Grammar

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow woman	0.2	
NN	\Rightarrow telescope	0.1	
DT	\Rightarrow the	1.0	
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

- Probability of a tree with rules $\alpha_{i} \rightarrow \beta_{i}$ is $\prod_{i} P\left(\alpha_{i} \rightarrow \beta_{i} \mid \alpha_{i}\right)$

DERIVATION

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow \mathrm{NP}$ VP	1.0
NP VP		

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow$ NP VP	1.0
NP VP	$\mathrm{NP} \rightarrow$ DT N	0.3
DT N VP		

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow$ NP VP	1.0
NP VP	$\mathrm{NP} \rightarrow$ DT N	0.3
DT N VP	$\mathrm{DT} \rightarrow$ the	1.0
the N VP		

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow$ NP VP	1.0
NP VP	$\mathrm{NP} \rightarrow$ DT N	0.3
DT N VP	$\mathrm{DT} \rightarrow$ the	1.0
the N VP	$\mathrm{N} \rightarrow$ dog	0.1
the dog VP		

```
DERIVATION
S
NP VP
DT N VP
the N VP
the dog VP
the dog VB
```

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow \mathrm{NP}$ VP	1.0
NP VP	$\mathrm{NP} \rightarrow$ DT N	0.3
DT N VP	$\mathrm{DT} \rightarrow$ the	1.0
the N VP	$\mathrm{N} \rightarrow \operatorname{dog}$	0.1
the dog VP	$\mathrm{VP} \rightarrow \mathrm{VB}$	0.4
the dog VB	$\mathrm{VB} \rightarrow$ laughs	0.5
the dog laughs		

TOTAL PROBABILITY $=1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parsetree, allowed by the underlying CFG
- Say we have a sentence S, set of derivations for that sentence is $\mathcal{T}(S)$. Then a PCFG assigns a probability to each member of $\mathcal{T}(S)$. i.e., we now have a ranking in order of probability.
- The probability of a string S is

$$
\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

Deriving a PCFG from a Corpus

- Given a set of example trees, the underlying CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$
P_{M L}(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

where the counts are taken from a training set of example trees.

- If the training data is generated by a PCFG, then as the training data size goes to infi nity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

PCFGs

[Booth and Thompson 73] showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

1. The rule probabilities define conditional distributions over the different ways of rewriting each non-terminal.
2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a finite number of steps is 1 . (This condition is not really a practical concern.)

Algorithms for PCFGs

- Given a PCFG and a sentence S, defi ne $\mathcal{T}(S)$ to be the set of trees with S as the yield.
- Given a PCFG and a sentence S, how do we fi nd

$$
\arg \max _{T \in \mathcal{T}(S)} P(T, S)
$$

- Given a PCFG and a sentence S, how do we fi nd

$$
P(S)=\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

Chomsky Normal Form

A context free grammar $G=(N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
- $X \rightarrow Y_{1} Y_{2}$ for $X \in N$, and $Y_{1}, Y_{2} \in N$
- $X \rightarrow Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

- Given a PCFG and a sentence S, how do we find

$$
\max _{T \in \mathcal{T}(S)} P(T, S)
$$

- Notation:

$$
\begin{array}{ll}
& n=\text { number of words in the sentence } \\
& N_{k} \text { for } k=1 \ldots K \text { is } k \text { 'th non-terminal } \\
\text { w.l.g., } & N_{1}=S \text { (the start symbol) }
\end{array}
$$

- Defi ne a dynamic programming table
$\pi[i, j, k]=$ maximum probability of a constituent with non-terminal N_{k} spanning words $i \ldots j$ inclusive
- Our goal is to calculate $\max _{T \in \mathcal{T}(S)} P(T, S)=\pi[1, n, 1]$

A Dynamic Programming Algorithm

- Base case defi nition: for all $i=1 \ldots n$, for $k=1 \ldots K$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

(note: defi ne $P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)=0$ if $N_{k} \rightarrow w_{i}$ is not in the grammar)

- Recursive defi nition: for all $i=1 \ldots n, j=(i+1) \ldots n, k=1 \ldots K$,

$$
\begin{aligned}
\pi[i, j, k]= & \max ^{i \leq s<j} \quad\left\{P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right) \times \pi[i, s, l] \times \pi[s+1, j, m]\right\} \\
& 1 \leq l \leq K \\
& 1 \leq m \leq K
\end{aligned}
$$

(note: defi ne $P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right)=0$ if $N_{k} \rightarrow N_{l} N_{m}$ is not in the grammar)

Initialization:

For $\mathrm{i}=1 \ldots \mathrm{n}, \mathrm{k}=1 \ldots \mathrm{~K}$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

Main Loop:

For length $=1 \ldots(n-1), i=1 \ldots(n-1$ ength $), k=1 \ldots K$
$j \leftarrow i+$ length
$\max \leftarrow 0$
For $s=i \ldots(j-1)$,
For N_{l}, N_{m} such that $N_{k} \rightarrow N_{l} N_{m}$ is in the grammar
prob $\leftarrow P\left(N_{k} \rightarrow N_{l} N_{m}\right) \times \pi[i, s, l] \times \pi[s+1, j, m]$
If prob $>\max$
$\max \leftarrow$ prob
//Store backpointers which imply the best parse

$$
\operatorname{Split}(i, j, k)=\{s, l, m\}
$$

$$
\pi[i, j, k]=\max
$$

A Dynamic Programming Algorithm for the Sum

- Given a PCFG and a sentence S, how do we fi nd

$$
\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

- Notation:

$$
\begin{array}{ll}
& n=\text { number of words in the sentence } \\
& N_{k} \text { for } k=1 \ldots K \text { is } k \text { 'th non-terminal } \\
\text { w.l.g., } & N_{1}=S \text { (the start symbol) }
\end{array}
$$

- Defi ne a dynamic programming table

$$
\begin{aligned}
\pi[i, j, k]= & \text { sum of probability of parses with root label } N_{k} \\
& \text { spanning words } i \ldots j \text { inclusive }
\end{aligned}
$$

- Our goal is to calculate $\sum_{T \in \mathcal{T}(S)} P(T, S)=\pi[1, n, 1]$

A Dynamic Programming Algorithm for the Sum

- Base case defi nition: for all $i=1 \ldots n$, for $k=1 \ldots K$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

(note: defi ne $P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)=0$ if $N_{k} \rightarrow w_{i}$ is not in the grammar)

- Recursive defi nition: for all $i=1 \ldots n, j=(i+1) \ldots n, k=1 \ldots K$,

$$
\pi[i, j, k]=\sum_{\substack{i \leq s<j \\ \\ \\ \\ 1 \leq l \leq K \\ 1 \leq m \leq K}}\left\{P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right) \times \pi[i, s, l] \times \pi[s+1, j, m]\right\}
$$

(note: defi ne $P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right)=0$ if $N_{k} \rightarrow N_{l} N_{m}$ is not in the grammar)

Initialization:

For $\mathrm{i}=1 \ldots \mathrm{n}, \mathrm{k}=1 \ldots \mathrm{~K}$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

Main Loop:

For length $=1 \ldots(n-1), i=1 \ldots(n-1$ ength $), k=1 \ldots K$ $j \leftarrow i+$ length
sum $\leftarrow 0$
For $s=i \ldots(j-1)$,
For N_{l}, N_{m} such that $N_{k} \rightarrow N_{l} N_{m}$ is in the grammar

$$
\begin{aligned}
\text { prob } & \leftarrow P\left(N_{k} \rightarrow N_{l} N_{m}\right) \times \pi[i, s, l] \times \pi[s+1, j, m] \\
\text { sum } & \leftarrow \operatorname{sum}+\text { prob } \\
\pi[i, j, k] & =\text { sum }
\end{aligned}
$$

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Weaknesses of PCFGs

- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies

$$
\begin{aligned}
\mathrm{PROB}= & P(\mathrm{~S} \rightarrow \mathrm{NP} \mathrm{VP} \mid \mathrm{S}) & & \times P(\mathrm{NNP} \rightarrow I B M \mid \mathrm{NNP}) \\
& \times P(\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \mid \mathrm{VP}) & & \times P(\mathrm{Vt} \rightarrow \text { bought } \mid \mathrm{Vt}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & & \times P(\mathrm{NNP} \rightarrow \text { Lotus } \mid \mathrm{NNP}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & &
\end{aligned}
$$

Another Case of PP Attachment Ambiguity

(a)

(b)

If $P(\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} \mid \mathrm{NP})>P(\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \mid \mathrm{VP})$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity

(a)

(b)

(a)

Rules
NP \rightarrow NP CC NP
NP \rightarrow NP PP
NP \rightarrow NNS
PP \rightarrow IN NP
NP \rightarrow NNS
NP \rightarrow NNS
NNS \rightarrow dogs
IN \rightarrow in
NNS \rightarrow houses
CC \rightarrow and
NNS \rightarrow cats

(b)

Rules
NP \rightarrow NP CC NP
$\mathrm{NP} \rightarrow$ NP PP
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{PP} \rightarrow \mathrm{IN} \mathrm{NP}$
$\mathrm{NP} \rightarrow$ NSS
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{NNS} \rightarrow$ dogs
$\mathrm{IN} \rightarrow$ in
$\mathrm{NNS} \rightarrow$ houses
$\mathrm{CC} \rightarrow$ and
$\mathrm{NNS} \rightarrow$ cats

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

(a)

(b)

- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.

Structural Preferences: Close Attachment

Previous example: John was believed to have been shot by Bill
Here the low attachment analysis (Bill does the shooting) contains same rules as the high attachment analysis (Bill does the believing), so the two analyses receive same probability.

References

[Altun, Tsochantaridis, and Hofmann, 2003] Altun, Y., I. Tsochantaridis, and T. Hofmann. 2003. Hidden Markov Support Vector Machines. In Proceedings of ICML 2003.
[Bartlett 1998] P. L. Bartlett. 1998. The sample complexity of pattern classifi cation with neural networks: the size of the weights is more important than the size of the network, IEEE Transactions on Information Theory, 44(2): 525-536, 1998.
[Bod 98] Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge University Press.
[Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to abstract languages. IEEE Transactions on Computers, C-22(5), pages 442-450.
[Borthwick et. al 98] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting Diverse Knowledge Sources via Maximum Entropy in Named Entity Recognition. Proc. of the Sixth Workshop on Very Large Corpora.
[Collins and Duffy 2001] Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural Language. In Proceedings of NIPS 14.
[Collins and Duffy 2002] Collins, M. and Duffy, N. (2002). New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In Proceedings of ACL 2002.
[Collins 2002a] Collins, M. (2002a). Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with the Perceptron Algorithm. In Proceedings of EMNLP 2002.
[Collins 2002b] Collins, M. (2002b). Parameter Estimation for Statistical Parsing Models: Theory and Practice of Distribution-Free Methods. To appear as a book chapter.
[Crammer and Singer 2001a] Crammer, K., and Singer, Y. 2001a. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. In Journal of Machine Learning Research, 2(Dec):265-292.
[Crammer and Singer 2001b] Koby Crammer and Yoram Singer. 2001b. Ultraconservative Online Algorithms for Multiclass Problems In Proceedings of COLT 2001.
[Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classifi cation using the Perceptron Algorithm. In Machine Learning, 37(3):277-296.
[Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning. Journal of Computer and System Sciences, 50(3):551-573, June 1995.
[Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to automata theory, languages, and computation. Reading, Mass.: Addison-Wesley.
[Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., \& Riezler, S. (1999). Estimators for stochastic 'unifi cation-based" grammars. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann.
[Lafferty et al. 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fi elds: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-01, pages 282-289, 2001.
[Littlestone and Warmuth, 1986] Littlestone, N., and Warmuth, M. 1986. Relating data compression and learnability. Technical report, University of California, Santa Cruz.
[MSM93] Marcus, M., Santorini, B., \& Marcinkiewicz, M. (1993). Building a large annotated corpus of english: The Penn treebank. Computational Linguistics, 19, 313-330.
[McCallum et al. 2000] McCallum, A., Freitag, D., and Pereira, F. (2000) Maximum entropy markov models for information extraction and segmentation. In Proceedings of ICML 2000.
[Miller et. al 2000] Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. 2000. A Novel Use of Statistical Parsing to Extract Information from Text. In Proceedings of ANLP 2000.
[Ramshaw and Marcus 95] Ramshaw, L., and Marcus, M. P. (1995). Text Chunking Using Transformation-Based Learning. In Proceedings of the Third ACL Workshop on Very Large Corpora, Association for Computational Linguistics, 1995.
[Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In Proceedings of the empirical methods in natural language processing conference.
[Schapire et al., 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686.
[Zhang, 2002] Zhang, T. 2002. Covering Number Bounds of Certain Regularized Linear Function Classes. In Journal of Machine Learning Research, 2(Mar):527-550, 2002.

