
6.864: Lecture 21 (November 29th, 2005)

Global Linear Models: Part II

Overview

• Log-linear models for parameter estimation

• Global and local features

– The perceptron revisited

– Log-linear models revisited

Three Components of Global Linear Models

• � is a function that maps a structure (x, y) to a feature vector
�(x, y) � Rd

• GEN is a function that maps an input x to a set of candidates
GEN(x)

• W is a parameter vector (also a member of Rd)

• Training data is used to set the value of W

Putting it all Together

• X is set of sentences, Y is set of possible outputs (e.g. trees)

• Need to learn a function F : X � Y

• GEN, �, W define

F (x) = arg max �(x, y) · W
y�GEN(x)

Choose the highest scoring candidate as the most plausible
structure

• Given examples (xi, yi), how to set W?

She announced a program to promote safety in trucks and vans

∈ GEN
S S S S S S

NP VP

announced NP

NP VP NP VP

announced NP

NP VP
She She

NP VP She NP VP She

announced NP

SheShe announced NP

NP VP

a program

VP

NP

VP

and NP

NP VP

announced NP NP VP a program
 announced
NP PP

to promote NP a program

safety PP

in

to promote NP PP in NP
NP

safety
in NP a program trucks and vans

NP
to promote NP

to promote NP trucks and vans
safety

trucks and vans NP

NP and NP
vans

vans NP and NP

NP
NP VP safety PP

vans

a program
in NPa program

to promote NP PP

to promote NP safety
trucks

in NP

trucks
safety PP

in NP

trucks

∈ � ∈ � ∈ � ∈ � ∈ � ∈ �

�1, 1, 3, 5� �2, 0, 0, 5� �1, 0, 1, 5� �0, 0, 3, 0� �0, 1, 0, 5� �0, 0, 1, 5�

� � · W � � · W � � · W � � · W � � · W � � · W

13.6 12.2 12.1 3.3 9.4 11.1

∈ arg max
S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP and NP

trucks vans

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: W = 0

Define: F (x) = argmaxy�GEN(x) �(x, y) · W

Algorithm: For t = 1 . . . T , i = 1 . . . n
zi = F (xi)
If (zi →= yi) W = W + �(xi, yi) − �(xi, zi)

Output: Parameters W

Overview

• Recap: global linear models

• Log-linear models for parameter estimation

• Global and local features

– The perceptron revisited

– Log-linear models revisited

�

�

Back to Maximum Likelihood Estimation

[Johnson et. al 1999]

• We can use the parameters to define a probability for each
parse:

�(x,y)·We
P (y | x, W) =

y��GEN(x) e
�(x,y�)·W

• Log-likelihood is then

L(W) = log P (yi | xi, W)
i

• A first estimation method: take maximum likelihood
estimates, i.e.,

WM L = argmaxWL(W)

Adding Gaussian Priors

[Johnson et. al 1999]

• A first estimation method: take maximum likelihood
estimates, i.e., WML = argmaxWL(W)

• Unfortunately, very likely to “overfit”:
could use feature selection methods, as in boosting

• Another way of preventing overfitting: choose parameters as
⎟ ⎠

WMAP = argmaxW L(W) − C
�

W
2
k

k

for some constant C

• Intuition: adds a penalty for large parameter values

�

�

�
�
��
 ��
 �
 �
 ��
 �

�

The Bayesian Justification for Gaussian Priors

•	 In Bayesian methods, combine the log-likelihood P (data | W) with a
prior over parameters, P (W)

P (data | W)P (W)
P (W | data) =

P (data | W)P (W)dW
W

• The MAP (Maximum A-Posteriori) estimates are

WM AP = argmax
W P (W | data)

⎛

⎜
⎜
⎝
log P (data | W) + log P (W)= argmax

W

Log-Likelihood Prior

W
2
kGaussian prior: P (W) � e −C • k

2� log P (W) = −C
�

Wk + C2k

�

�

Summary

Choose parameters as:
⎟ ⎠

WM AP = argmaxW L(W) − C
�

W
2
k

k

where

L(W) = log P (yi | xi, W)
i

�(xi,yi)·We
= log

i

�
y��GEN(xi) e

�(xi,y�)·W

Can use (conjugate) gradient ascent
(see previous lectures on log-linear models)

Overview

• Recap: global linear models

• Log-linear models for parameter estimation

• Global and local features

– The perceptron revisited

– Log-linear models revisited

Global and Local Features

• So far: algorithms have depended on size of GEN

• Strategies for keeping the size of GEN manageable:

– Reranking methods: use a baseline model to generate its
top N analyses

Global and Local Features

•	 Global linear models are “global” in a couple of ways:

–	Feature vectors are defined over entire structures

– Parameter estimation methods explicitly related to errors
on entire structures

•	 Next topic: global training methods with local features

–	Our “global” features will be defined through local features

–	Parameter estimates will be global

–	GEN will be large!

–	Dynamic programming used for search and parameter estimation:
this is possible for some combinations of GEN and �

Tagging Problems

TAGGING: Strings to Tagged Sequences

a b e e a f h j � a/C b/D e/C e/C a/D f/C h/D j/C

Example 1: Part-of-speech tagging
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N
Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA

Tagging

Going back to tagging:

• Inputs x are sentences w[1:n] = {w1 . . . wn}

• GEN(w[1:n]) = T n i.e. all tag sequences of length n

• Note: GEN has an exponential number of members

• How do we define �?

Representation: Histories

• A history is a 4-tuple ⇒t−1, t−2, w[1:n], i⇓

• t−1, t−2 are the previous two tags.

• w[1:n] are the n words in the input sentence.

• i is the index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• t−1, t−2 = DT, JJ

• w[1:n] = ⇒Hispaniola, quickly, became, . . . , Hemisphere, .⇓

• i = 6

�

�

�

Local Feature-Vector Representations

• Take a history/tag pair (h, t).

• �s(h, t) for s = 1 . . . d are local features representing tagging
decision t in context h.

Example: POS Tagging

• Word/tag features

1 if current word wi is base and t = VB
�100(h, t) =

0 otherwise

1 if current word wi ends in ing and t = VBG
�101(h, t) =

0 otherwise

• Contextual Features

1 if ⇒t−2, t−1, t⇓ = ⇒DT, JJ, VB⇓
�103(h, t) =

0 otherwise

A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t
−2 t

−1 w[1:n] i t
* * ∈Hispaniola, quickly, . . . , ∝ 1 NNP
* NNP ∈Hispaniola, quickly, . . . , ∝ 2 RB
NNP RB ∈Hispaniola, quickly, . . . , ∝ 3 VB
RB VB ∈Hispaniola, quickly, . . . , ∝ 4 DT
VP DT ∈Hispaniola, quickly, . . . , ∝ 5 JJ
DT JJ ∈Hispaniola, quickly, . . . , ∝ 6 NN

�

A tagged sentence with n words has n history/tag pairs

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/NN

History Tag
t
−2 t

−1 w[1:n] i t
* * ∈Hispaniola, quickly, . . . , ∝ 1 NNP
* NNP ∈Hispaniola, quickly, . . . , ∝ 2 RB
NNP RB ∈Hispaniola, quickly, . . . , ∝ 3 VB
RB VB ∈Hispaniola, quickly, . . . , ∝ 4 DT
VP DT ∈Hispaniola, quickly, . . . , ∝ 5 JJ
DT JJ ∈Hispaniola, quickly, . . . , ∝ 6 NN

Define global features through local features:

n

�(t[1:n], w[1:n]) = �(hi, ti)
i=1

where ti is the i’th tag, hi is the i’th history

�

Global and Local Features

• Typically, local features are indicator functions, e.g.,

1 if current word wi ends in ing and t = VBG
�101(h, t) =

0 otherwise

• and global features are then counts,

�101(w[1:n], t[1:n]) = Number of times a word ending in ing is
tagged as VBG in (w[1:n], t[1:n])

Putting it all Together

• GEN(w[1:n]) is the set of all tagged sequences of length n

• GEN, �, W define

F (w[1:n]) = arg max W · �(w[1:n], t[1:n])
t[1:n]�GEN(w[1:n])

n �

= arg max W ·

t[1:n]�GEN(w[1:n])
i=1

�(hi, ti)

n �

= arg max

t[1:n]�GEN(w[1:n])
i=1

• Some notes:

W · �(hi, ti)

– Score for a tagged sequence is a sum of local scores

– Dynamic programming can be used to find the argmax!
(because history only considers the previous two tags)

A Variant of the Perceptron Algorithm

Inputs: Training set (xi, yi) for i = 1 . . . n

Initialization: W = 0

Define: F (x) = argmaxy�GEN(x) �(x, y) · W

Algorithm: For t = 1 . . . T , i = 1 . . . n
zi = F (xi)
If (zi →= yi) W = W + �(xi, yi) − �(xi, zi)

Output: Parameters W

Training a Tagger Using the Perceptron Algorithm

Inputs: Training set (w[1:ni]
, tii

[1:ni]
) for i = 1 . . . n.

Initialization: W = 0

Algorithm: For t = 1 . . . T, i = 1 . . . n

i z[1:ni] = arg max W · �(w[1:ni]
, u[1:ni])

u[1:ni]
�T ni

z[1:ni] can be computed with the dynamic programming (Viterbi) algorithm

= tiIf z[1:ni] → [1:ni] then

i

W = W + �(w i w[1:ni]

, z[1:ni])[1:ni]
, t[1:ni]

) − �(i

Output: Parameter vector W.

An Example

Say the correct tags for i’th sentence are

the/DT man/NN bit/VBD the/DT dog/NN

Under current parameters, output is

the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs

Parameters incremented:

⇒NN, VBD⇓, ⇒VBD, DT⇓, ⇒VBD � bit⇓

Parameters decremented:

⇒NN, NN⇓, ⇒NN, DT⇓, ⇒NN � bit⇓

Experiments

• Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%, Max-ent = 3.28%

(11.9% relative error reduction)

• [Ramshaw and Marcus, 1995] NP chunking data

Perceptron = 93.63%, Max-ent = 93.29%

(5.1% relative error reduction)

How Does this Differ from Log-Linear Taggers?

• Log-linear taggers (in an earlier lecture) used very similar
local representations

• How does the perceptron model differ?

• Why might these differences be important?

Log-Linear Tagging Models

• Take a history/tag pair (h, t).

• �s(h, t) for s = 1 . . . d are features
Ws for s = 1 . . . d are parameters

• Conditional distribution:

W·�(h,t)e
P (t|h) =

Z(h,W)

W·�(h,t�)where Z(h,W) =
�

t� �T e

• Parameters estimated using maximum-likelihood
e.g., iterative scaling, gradient descent

�
 ��
 �
 �
 ��
 �

�
 ��
 �

Log-Linear Tagging Models

• Word sequence w[1:n] = [w1, w2 . . . wn]
• Tag sequence t[1:n] = [t1, t2 . . . tn]
• Histories hi = ⇒ti−1, ti−2, w[1:n], i⇓

log P (t[1:n] | w[1:n])
n �
 n �
 n �

log P (ti | hi) = W · �(hi, ti) −
 log Z(hi,W)=
i=1 i=1 i=1

Linear Score Local Normalization
Terms

• Compare this to the perceptron, where GEN, �, W define

n �

F (w[1:n])
 W · �(hi, ti)= arg max
t[1:n] �GEN(w[1:n])

i=1

Linear score

Problems with Locally Normalized models

• “Label bias” problem [Lafferty, McCallum and Pereira 2001]
See also [Klein and Manning 2002]

• Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

a b c �
A
|

— B — C

| | with P (A B C | a b c) = 1

a b c

a b e �
A
|

— D — E

| | with P (A D E | a b e) = 1

a b e

• Impossible to find parameters that satisfy

P (A | a) × P (B | b, A) × P (C | c, B) = 1

P (A | a) × P (D | b, A) × P (E | e, D) = 1

Overview

• Recap: global linear models, and boosting

• Log-linear models for parameter estimation

• An application: LFG parsing

• Global and local features

– The perceptron revisited

– Log-linear models revisited

�

�

Global Log-Linear Models

• We can use the parameters to define a probability for each
tagged sequence:

W·�(hi,ti)
ie

P (t[1:n] | w[1:n],W) =
Z(w[1:n],W)

where

iZ(w[1:n],W) =
�

e
�

W·�(hi ,ti)

t[1:n] �GEN(w[1:n])

is a global normalization term

• This is a global log-linear model with

�(w[1:n], t[1:n]) = �(hi, ti)
i

�

�

Now we have:

log P (t[1:n] | w[1:n])
n

= W · �(hi, ti) − log Z(w[1:n],W)
i=1 � �� �
� �� � Global Normalization

Linear Score Term

When finding highest probability tag sequence, the global term
is irrelevant:

n �� ⎞
argmaxt[1:n] �GEN(w[1:n]) W · �(hi, ti) − log Z(w[1:n],W)

i=1

n

= argmaxt[1:n] �GEN(w[1:n]) W · �(hi, ti)
i=1

� �

�
� �

Parameter Estimation

• For parameter estimation, we must calculate the gradient of

n �

�)
i

� ,t
i
W·�(hlog P (t[1:n] | w[1:n]) = W·�(hi, ti)−log
 ie

i=1 �
[1:]n
�GEN(w[1:n])
t

with respect to W

• Taking derivatives gives

dL n �
 n �
[1:n] | w[1:n],W) �(hi

� , ti)�(hi, ti)− P (t=

dW

i=1 �
[1:]n
�GEN(w[1:n]) i=1
t

• Can be calculated using dynamic programming!

(very similar to forward-backward algorithm for EM training)

�

Summary of Perceptron vs. Global Log-Linear Model

• Both are global linear models, where

GEN(w[1:n]) = the set of all possible tag sequences for w[1:n]

�(w[1:n], t[1:n]) =
�

�(hi, ti)
i

• In both cases,

F (w[1:n]) = argmaxt[1:n] �GEN(w[1:n])
W · �(w[1:n], t[1:n])

= argmaxt[1:n] �GEN(w[1:n]) W · �(hi, ti)
i

can be computed using dynamic programming

• Dynamic programming is also used in training:

– Perceptron requires highest-scoring tag sequence for each
training example

– Global log-linear model requires gradient, and therefore
“expected counts”

Results

From [Sha and Pereira, 2003]

• Task = shallow parsing (base noun-phrase recognition)

Model Accuracy
SVM combination 94.39%
Conditional random field 94.38%
(global log-linear model)
Generalized winnow 93.89%
Perceptron 94.09%
Local log-linear model 93.70%

References

[Abney 1997] Abney

[ABR64] Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning.
Automation and Remote Control, 25:821–837.

[Bod 98] Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge University Press.

[Zhang 2002] covering number paper

[Littlestone and Warmuth 1986] Littlestone and Warmuth.

[CHA97] Charniak, E. (1997). Statistical techniques for natural language parsing. In AI Magazine, Vol. 18, No. 4.

[COL00] Collins, M. (2000). Discriminative Reranking for Natural Language Parsing. Proceedings of the Seventeenth International Conference on Machine
Learning. San Francisco: Morgan Kaufmann.

[CD01] Collins, M. and Duffy, N. (2001). Parsing with a Single Neuron: Convolution Kernels for Natural Language Problems. Technical report UCSC-CRL-
01-01, University of California at Santa Cruz.

[CV95] Cortes, C. and Vapnik, V. (1995). Support–Vector Networks. Machine Learning, 20(3):273–297.

[Work with Rob Schapire, Yoram Singer at COLT 2000]

[Friedman, Hastie, and Tibshirani 1998] Friedman.

[Lafferty 1999] lafferty.

[Lafferty, McCallum and Pereira 2001] CRFs

[Della Pietra, Della Pietra, and Lafferty 1997] Lafferty

[Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the Perceptron Algorithm. In Machine Learning, 37(3):277–
296.

[FISS98]	Freund, Y., Iyer, R.,Schapire, R.E., & Singer, Y. (1998). An efficient boosting algorithm for combining preferences. In Machine Learning: Proceedings
of the Fifteenth International Conference. San Francisco: Morgan Kaufmann.

[HAU99]	Haussler, D. (1999). Convolution Kernels on Discrete Structures. Technical report, University of Santa Cruz.

[Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning.

[LCSW01] Lodhi, H., Cristianini, N., Shawe-Taylor, J., and Watkins, C. (2001). Text Classification using String Kernels. To appear in Advances in Neural
Information Processing Systems 13, MIT Press.

[Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators for stochastic ‘unification-based” grammars. In Proceedings
of the 37th Annual Meeting of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann.

[Johnson, Geman, Canon, Chi, and Riezler 1999] Johnson, M., Geman, S., Canon, S., Chi, S., & Riezler, S. (1999). Estimators for stochastic ‘unification-based”
grammars. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann.

[MSM93] Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus of english: The Penn treebank. Computational Linguistics,
19, 313-330.

[Prince and Smolensky] Prince and Smolensky. Optimality theory.

[Ramshaw and Marcus 95] Prince and Smolensky. Optimality theory.

[Ratnaparkhi 96]

[SSM99]	Scholkopf, B., Smola, A.,and Muller, K.-R. (1999). Kernel principal component analysis. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods – SV Learning, pages 327-352. MIT Press, Cambridge, MA.

[Walker et al. 2001] Walker, M., Rambow, O., and Rogati, M. (2001). SPoT: a trainable sentence planner. In Proceedings of the 2nd Meeting of the North
American Chapter of the Association for Computational Linguistics (NAACL 2001).

[WAT00]	Watkins, C. (2000). Dynamic alignment kernels. In A.J. Smola, P.L. Bartlett, B. Schlkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 39-50, MIT Press.

