
Dialogue and Conversational Agents


Regina Barzilay


MIT


December, 2005




Outline


• Statistical NLU component 

• Reinforcement learning for dialogue management


• Planning-based agent system 



Statistical NLU component


• A fully statistical approach to natural language interfaces


• Task: map a sentence + context to a database query 

User: Show me flights from NY to Boston, leaving tomorrow 

System: [returns a list of flights] 

Show: (Arrival-time)


Origin (City ”NY“)


Destination: (City ”Boston”)


Date: (November 27th, 2003)




Representation


•	 W=input sentence 

•	 H=history (some representation of previous sentences) 

•	 T=a parse tree for W 

•	 F,S=a context-independent semantic representation for W


•	 M=a context-dependent representation for W (M depends 

on both F, S and H) 



Example


W = input sentence; H = history; T = a parse tree for W ; F, S = a 

context independent semantic representation for W ; M = a 

context-dependent semantic representation for W 

User: Show me flights from Newark or New York to Atlanta, leaving 

tomorrow 

System: returns a list of flights 

User: When do the flights that leave from Newark arrive in Atlanta 

W = When do the flights that leave from Newark arrive in Atlanta


Show: (flights) 

H= 
Origin (City ”NY“) or (City ”NY“) 

Destination: (City ”Atlanta”) 

Date: (November 27th, 2003) 



Example


W = input sentence; H = history; T = a parse tree for W ; F, S = a 

context independent semantic representation for W ; M = a 

context-dependent semantic representation for W 

User: Show me flights from Newark or New York to Atlanta, leaving 

tomorrow 

System: returns a list of flights 

User: When do the flights that leave from Newark arrive in Atlanta 

W = When do the flights that leave from Newark arrive in Atlanta


Show: (Arrival-time) 

F,S= Origin (City “Newark”) 

Destination: (City ”Atlanta”) 



Example


H=


F,S=


M=


Show: (flights) 

Origin 

Destination: 

Date: 

(City ”NY“) or (City ”NY“) 

(City ”Atlanta”) 

(November 27th, 2003) 

Show: (Arrival-time) 

Origin 

Destination: 

(City “Newark”) 

(City ”Atlanta”) 

Show: (Arrival-time) 

Origin 

Destination: 

Date: 

(City “Newark”) 

(City ”Atlanta”) 

(November 27th, 2003) 



A Parse Tree


Each non-terminal has a syntactic and semantic tag, 

e.g., city/npr 

/top 

/wh−question 

/aux flight/np arrival/vp
time 
/wh−head 

do arrival location

When /vp−head /pp


location city 

/prep /npr 

in Atlanta 



� 

Building a Probabilistic Model


•	 Basic goal: build a model of P (M |W, H) – probability of a 

context-dependent interpretation, given a sentence and a 

history 

•	 We’ll do this by building a model of P (M, W, F, T, S|H), 

giving 

P (M, W |H) = 
� 

P (M, W, F, T, S|H) 
F,T ,S 

and 

argmaxM P (M |W, H) = argmaxM P (M, W |H) 

= argmaxM P (M, W, F, T, S|H) 
F,T ,S 



Building a Probabilistic Model


Our aim is to estimate P (M, W, F, T, S|H) 

• Apply Chain rule: 

P (M, W, F, T, S|H) = P (F |H)P (T, W |F, H)P (S|T, W, F, H)P (M|S, T, W, F, H) 

• Independence assumption: 

P (M, W, F, T, S|H) = P (F )P (T, W |F )P (S|T, W, F ) × P (M|S, F, H) 



Building a Probabilistic Model


P (M, W, F, T, S|H) = P (F )P (T, W |F )P (S|T, W, F )×P (M |S,F, H)


•	 The sentence processing model is a model of


P (T, W, F, S). Maps W to (F, S, T ) triple (a


context-independent interpretation)


•	 The contextual processing model goes from a (F, S, H)


triple to a final interpretation, M




Example


H=


F,S=


M=


Show: (flights) 

Origin 

Destination: 

Date: 

(City ”NY“) or (City ”NY“) 

(City ”Atlanta”) 

(November 27th, 2003) 

Show: (Arrival-time) 

Origin 

Destination: 

(City “Newark”) 

(City ”Atlanta”) 

Show: (Arrival-time) 

Origin 

Destination: 

Date: 

(City “Newark”) 

(City ”Atlanta”) 

(November 27th, 2003) 



Building a Probabilistic Model


P (T, W, F, S) = P (F )P (T, W |F )P (S|T, W, F ) 

• First step: choose the frame F with probability P (F )


Show: (Arrival-time)


Origin


Destination:




The Sentence Processing Model


P (T, W, F, S) = P (F )P (T, W |F )P (S|T, W, F ) 

•	 Next step: generate the parse tree T and sentence W


•	 Method uses a probabilistic context-free grammar, where 

markov processes are used to generate rules. Different 

rule parameters are used for each value of F 



The Sentence Processing Model

flight 
/np 

/det flight flight−constraint 
/rel−clause/corenp 

P(/det flight/corenp flight−constraints/rel−clause|flight/np) 
= P(/det|NULL, flight/np) *P(flight/corenp|/det,flight/np) 
* P(flight−constraints|relclause|flight/corenp,flight/np)
* P(STOP|flight−constraints/relclause,flight/np)

•	 Use maximum likelihood estimation 

Count(corenp, np)
PML(corenp|np) = 

Count(np) 

•	 Backed-off estimates generate semantic, syntactic parts of 

each label separately 



The Sentence Processing Model


•	 Given a frame F , and a tree T , fill in the semantic slots S 

Show: (Arrival-time) 

Origin


Destination:


Show: (Arrival-time)


Origin Newark


Destination: Atlanta


• Method works by considering each node of the parse tree


T, and applying probabilities P (slot-fill-action|S,node)




The Sentence Processing Model: Search


P (T, W, F, S) = P (F )P (T, W |F )P (S|T, W, F ) 

•	 Goal: produce n high probability (F, S, T, W ) tuples


•	 Method: 

–	 In first pass, produce n-best parses under a parsing model 

that is independent of F 

–	 For each tree T , for each possible frame F , create a 

(W, T, F ) triple with probability P (T, W, |F ). Keep the top n 

most probable triples. 

–	 For each triple, use beam search to generate several high 

probability (W, T, F, S) tuples. Keep the top n most 

probable. 



The Contextual Model


H=


Show: (flights) 

Origin 

Destination: 

Date: 

(City ”NY“) or (City ”NY“) 

(City ”Atlanta”) 

(November 27th, 2003) 

F,S=


Show: (Arrival-time) 

Origin 

Destination: 

(City “Newark”) 

(City ”Atlanta”) 

M=


Show: (Arrival-time) 

Origin 

Destination: 

Date: 

(City “Newark”) 

(City ”Atlanta”) 

(November 27th, 2003) 



The Contextual Model


•	 Only issue is whether values in H, but not in (F, S), should be 

carried over to M. 

Show: (Arrival-time)


Origin (City “Newark”)

M= 

Destination: (City ”Atlanta”)


Date:	 (November 27th, 2003) 

•	 Method uses a decision-tree model to estimate probability of 

”carrying over” each slot in H which is not in F, S. 



Reinforcement Learning for Dialogue

Management


•	 Automatic Optimization of Dialogue Management


(Litman&Kearns&Singh&, 2000) 

•	 Uses reinforcement learning to learn a high-level dialogue 

strategy 



System: Welcome to NJFun. How may I help you? 

User: I’d like to find um winetasting in Lambertville in 

the morning 

System: Did you say you are interested in Lambertville? 

User: Yes 

System: Did you say you want to go in the morning? 

User: Yes 

System: I found a winery near Lambertville that is open 

in the morning. It is [. . . ]. Please give me feedback by 

saying “good”, “so-so” or “bad” 

User: Good 



The NJFun System


•	 Three attributes needed: activity, location, time 

e.g., wine-tasting, Lambertsville, Sunday 

•	 Basic strategy: first get activity attribute, then 

location, finally time, then make a database query 



Dialogue Strategies


At any point in the dialogue, the following choices can 

be made: 

• System initiative vs. user


System initiative: Welcome to NJFun. Please say an 

activity name or say “list activities” for activities I 

know about. 

User initiative: Welcome to NJFun. How may I help 

you? 

• Confirmation/no confirmation of attribute values


Confirmation: Did you say you are interested in 

Lambertville? 



�

The Abstract Model


•	 We have a set of possible states, S


•	 For each state s � S, there is a set of possible actions, 

A(s) 

•	 Given an action a in state s, the probability of


transitioning to state s � is P (s |s, a) 

•	 For a state-action pair (s, a), the reward received is R(s, a) 

(e.g., R(s, a) = 1 if the action leads to the dialogue being 

successfully completed, R(s, a) = 0 otherwise) 

•	 A dialogue is a sequence of n state/action pairs, 

(s1, a1), (s2, a2) . . . (sn , an ) 



Why Reinforcement Learning?


•	 Problem is to learn a mapping from states to actions


•	 Why isn’t this a regular supervised learning 

problem? 

•	 The reward is delayed: we might take several 

actions in sequence, and the only supervised 

information comes at the end of the dialogue 

(success or failure) 

–	 we need to infer the utility of each action in each 

state from this indirect or delayed form of 

supervision 



� 

�	 � � 

Policies


•	 A policy � : S � A is a function that maps states to 

actions 

•	 Define 

Q(s, a) = R(s, a) +
� 

P (s |s, a) maxQa� (s , a ) 
s

•	 Q(s, a) is the expected reward when action a is taken in 

state s 

•	 If P (s � |s, a) is known, Q(s, a) can be calculated, and 

optimal policy is �(s) = argmaxa Q(s, a) 

Main point: If P (s �|s, a) can be learned from training 

examples, then optimal policy can be computed 



Learning in this Model


•	 User builds the skeleton of a dialogue system:


–	 A set of possible states 

–	 A set of possible actions in each state


•	 Training stage: 

–	 Interact with a user, with a random choice of actions 

in each state 

–	 Result: a training set of example dialogues


( (s1 , a1 ), (s2, a2 ) . . . (sn , an ) sequences)


–	 From these sequences, estimate P (s �|s, a), and 

compute the optimal policy 



States in the Dialogue System


•	 Has the system greeted the user?


•	 Which attribute is the system trying to obtain? (activity, 

location or time) 

•	 For each of the 3 attributes (activity, location, time): 

–	 Has the system obtained the attribute’s value? 

–	 What is the system’s confidence in the attribute’s value? 

–	 Number of times the system has asked about the attribute 

–	 Type of speech recognition grammar most recently used in 

the attribute query 



States in the Dialogue System


•	 greet=0 if user has to be greeted, 1 otherwise


•	 attr represents attribute being queried; 1/2/3 
=activity/location/time, 4 = done with attributes 

•	 conf represents confidence in the attribute value. 
0,1,2=low/miidle/high confidence in the speech recognizer; 
3=recognition system has received “YES” as an answer to a 
confirmation; 4=system has received “NO” 

•	 val=1 if attribute value has been obtained, 0 otherwise 

•	 times=number of times system has asked about the attribute


•	 gram=type of grammar used to obtain the attribute value 

•	 hist=0 if system has had problems in understanding the user 
earlier in the conversation; 1 otherwise 



States in the Dialogue System


feature greet attr conf val times gram hist


values 0,1 1,2,3,4 0,1,2,3,4 0,1 0,1,2 0,1 0,1


• An example state: 1240101 

• In total, there are 62 possible states




Actions in the System


Possible Choices: 

•	 Greeting vs. asking user about activity/location/time 

•	 Type of prompt: user initiative vs. system initiative 

System initiative: I know about amusement parks, 

aquariums, cruises, . . . . Please say a name from the list 

User initiative: Please tell me the activity type. You can 

also tell me the location and time. 

•	 Type of grammar used in the speech recognizer:


restrictive vs. non-restrictive




System initiative: I know about amusement parks, 
aquariums, cruises, . . . . Please say a name from the list 

� use a speech recognizer grammar which only allows 
items from the list 

User initiative: Please tell me the activity type. You can 
also tell me the location and time. 

� use a speech recognizer grammar with a much 
broader set of possible utterances 



Actions in the System


Choices:


•	 Greeting vs. asking user about activity vs. asking user 

about location. 

•	 User initiative vs. system initiative


•	 Restrictive vs. non-restrictive 

Action 

GreetS 

GreetU 

REAsk1S 

Ask2U 

Description 

attribute=greeting, system initiative 

attribute=greeting, user initiative 

attribute=activity, system initiative, restrictive gram. 

attribute=location, system initiative, unrestrictive gram. 



Actions in the System




An Example


•	 Initial state is always


•	 Possible actions in this state: 

GreetU: Welcome to NJFun. How may I help you? 

GreetS: Welcome to NJFun. Please say an active name or 

say “list activities” for a list of activities I know about 

In this state, system learns that GreetU is optimal


action


•	 Results in the following reply from the user: 

System: Welcome to NJFun. How may I help you? 

User: I’d like to find um winetasting in Lambertville in the 

morning 



An Example


System: Welcome to NJFun. How may I help you?

User: I’d like to find um winetasting in Lambertville in the morning


•	 At this point, state is


greet attr conf val times gram hist 

1 1 2 1 0 0 0 

(user has been greeted, current attribute is activity, confidence in 
answer=2, val=1 (activity value has been obtained) etc.) 

•	 Possible actions in this state: 
ExpConf1: Did you say you are interested in winetasting? 
NoConf: say nothing, move directly to the state 

greet attr conf val times gram hist 

1 2 2 1 0 0 1 

In this state, system learns that NoConf is optimal action




System: Welcome to NJFun. How may I help you?


User: I’d like to find um winetasting in Lambertville in the morning


System: Did you say you are interested in Lambertville?


User: Yes


System: Did you say you want to go in the morning?


User: Yes


System: I found a winery near Lambertville that is open in the morning.


It is [. . . ]. Please give me feedback by saying “good”, “so-so” or “bad”


User: Good


greet attr conf val times gram hist


0 1 0 0 0 0 0 

1 1 2 1 0 0 0 

1 2 2 1 0 0 1 

1 3 2 1 0 0 1 

1 4 0 0 0 0 0 

Action 

GreetU 

NoConf 

ExpConf2 

ExpConf2 

Tell 

Turn 

S1 

-

S2 

S3 

S4 

Reward 

0 

0 

0 

0 

1 



Experiments


•	 Each user asked to solve a particular task: 

e.g., You feel thirsty and want to do some winetasting in the 

morning. Are there any wineries close by your house in 

Lambertville? 

•	 Collected 311 complete dialogues 

Randomly picked between possible actions in each state 

•	 54/62 states had more than 10 training examples 

Used examples to compute the optimal dialogue policy 

•	 Gathered 124 complete test dialogues under the optimal strategy


•	 Performance: 64% task completion in test (i.e., under the 

computed policy), 52% task completion in training phase (i.e., 

under the randomized policy) 



Planning-based Conversational Agents


•	 Idea: Model Gricean inference to design intelligent 

conversational systems 

•	 Methods: Use planning and reasoning methods


–	 Involves planning, plus various extensions to logic to 

create logic for Belief, Desire, Intention 



Plan-based agent interpreting user

utterance


C: I need to travel in May 
A: And, what day in May did you want to travel? 
C: OK, uh, I need to be there for a meeting that’s from the 12th

C: to the 15th 

Inference chain: 

•	 Systems knows that one precondition for having a meeting is


being at the place where the meeting is


•	 One way of being at a place is flying there 

•	 Booking a flight is a precondition for flying there


System abduces that user wants to fly on a date before the 

12th 



Plan-based agent producing user

utterance


C: I need to travel in May 
A: And, what day in May did you want to travel? 
C: OK, uh, I need to be there for a meeting that’s from the 12th

C: to the 15th 

Inference chain: 

•	 The system must know enough information about the flight to


book it


•	 Knowing the month (May) is insufficient information to specify a 

departure or return day 

System asks the client about the needed dates




BDI Logic


•	 B(S,P) = “speaker S believes proposition P”


•	 KNOW(S,P) = P and B(S,P) 

•	 KNOWIF (S,P) = “S knows whether P” = KNOW (S,P) or 

KNOW (S,notP) 

•	 W(S¡P) “S wants P to be true”, where P is a state or the 

execution of some action 

•	 W(S,ACT(H))=S wants H to do ACT




How to represent actions


•	 Preconditions:


–	 Conditions that must already be true in order to 

successfully perform the action 

•	 Effects:


–	 Conditions that become true as a result of successfully 

performing the action 

•	 Body:


–	 A set of partially ordered goal states that must be 

achieved in performing the action 



The action of booking a flight


•	 BOOK-FLIGHT (A,C,F) 

•	 Constraints: Agent(A)&Flight(F)&Client(C)


•	 Precondition: Know (A, dep-time(F))& Know(A, 

dep-time(F)) &Know(A,origin(F))&Has-Seats(F)& W(C, 

BOOK, A, C, F)& . . . 

•	 Effect: Flight-Booked(A,C,F) 

•	 Body: Make-Reservation (A,F,C)




Speech acts


• INFORM(S,H,P) 

• Constraints: Speaker(S) & Hearer(H) & Proposition(P)


• Precondition: Know(S,P) & W(S,INFORM(S,H,P)) 

• Effect: Know(H,P) 

• Body: B(H(W(S,Know(H,P)))) 



Speech acts


• REQUEST-INFORM(A,C,I) 

• Constraints: Agent(A) & Client (C)


• Precondition: Know(C,I) 

• Effect: Know(A,I) 

• Body: B(C(W(A,Know(A,I)))) 



How a plan-based agent works


While conversation is not finished 

•	 If user has completed a turn 

–	 Then interpret user’s utterance 

•	 If system has obligations 

–	 Then address obligations


•	 Else if system has turn 

–	 Then if system has intended conversation acts, then call 
generator to produce utterances 

–	 Else if high-level goals are unsatisfied, then address goals 

–	 Else release turn or attempt to end conversation 

•	 Else if no one has turn or long pause 

–	 Then take turn 



Summary


• Statistical NLU component 

• Reinforcement learning for dialogue management


• Planning-based agent system 


