6.864: Lecture 3 (September 15, 2005) Smoothed Estimation, and Language Modeling

Overview

- The language modeling problem
- Smoothed "n-gram" estimates

The Language Modeling Problem

- We have some vocabulary, say $\mathcal{V}=\{$ the, a, man, telescope, Beckham, two, ...\}
- We have an (infinite) set of strings, \mathcal{V}^{*}
the
a
the fan
the fan saw Beckham
the fan saw saw
the fan saw Beckham play for Real Madrid

The Language Modeling Problem (Continued)

- We have a training sample of example sentences in English
- We need to "learn" a probability distribution \hat{P} i.e., \hat{P} is a function that satisfies

$$
\sum_{x \in \mathcal{V}^{*}} \hat{P}(x)=1, \quad \hat{P}(x) \geq 0 \text { for all } x \in \mathcal{V}^{*}
$$

$$
\hat{P}(\text { the })=10^{-12}
$$

$$
\hat{P}(\text { the fan })=10^{-8}
$$

$$
\hat{P}(\text { the fan saw Beckham })=2 \times 10^{-8}
$$

$$
\hat{P}(\text { the fan saw saw })=10^{-15}
$$

$\hat{P}($ the fan saw Beckham play for Real Madrid $)=2 \times 10^{-9}$

- Usual assumption: training sample is drawn from some underlying distribution P, we want \hat{P} to be "as close" to P as possible.

Why on earth would we want to do this?!

- Speech recognition was the original motivation. (Related problems are optical character recognition, handwriting recognition.)
- The estimation techniques developed for this problem will be VERY useful for other problems in NLP

Deriving a Trigram Probability Model

Step 1: Expand using the chain rule:

$$
\begin{aligned}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)= & P \\
& \left(w_{1} \mid \text { START }\right) \\
& \times P\left(w_{2} \mid \text { START, } w_{1}\right) \\
& \times P\left(w_{3} \mid \text { START, } w_{1}, w_{2}\right) \\
& \times P\left(w_{4} \mid \text { START }, w_{1}, w_{2}, w_{3}\right) \\
& \ldots \\
& \times P\left(w_{n} \mid \text { START }, w_{1}, w_{2}, \ldots, w_{n-1}\right) \\
& \times P\left(\text { STOP } \mid \text { START }, w_{1}, w_{2}, \ldots, w_{n-1}, w_{n}\right)
\end{aligned}
$$

For Example

$$
\begin{aligned}
P(\text { the }, \text { dog, laughs })=P & (\text { the } \mid \text { START }) \\
& \times P(\operatorname{dog} \mid \text { START, the }) \\
& \times P(\text { laughs } \mid \text { START, the, dog }) \\
& \times P(\text { STOP } \mid \text { START, the }, \text { dog }, \text { laughs })
\end{aligned}
$$

Deriving a Trigram Probability Model

Step 2: Make Markov independence assumptions:

$$
\begin{aligned}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)= & P\left(w_{1} \mid \text { START }\right) \\
& \times P\left(w_{2} \mid \operatorname{START}, w_{1}\right) \\
& \times P\left(w_{3} \mid w_{1}, w_{2}\right) \\
& \cdots \\
& \times P\left(w_{n} \mid w_{n-2}, w_{n-1}\right) \\
& \times P\left(\text { STOP } \mid w_{n-1}, w_{n}\right)
\end{aligned}
$$

General assumption:
$P\left(w_{i} \mid\right.$ START, $\left.w_{1}, w_{2}, \ldots, w_{i-2}, w_{i-1}\right)=P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
For Example

$$
\begin{aligned}
P(\text { the }, \text { dog, laughs })= & P(\text { the } \mid \text { START }) \\
& \times P(\text { dog } \mid \text { START, the }) \\
& \times P(\text { laughs } \mid \text { the }, \text { dog }) \\
& \times P(\text { STOP } \mid \text { dog }, \text { laughs })
\end{aligned}
$$

The Trigram Estimation Problem

Remaining estimation problem:

$$
P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

For example:

$$
P(\text { laughs } \mid \text { the }, \operatorname{dog})
$$

A natural estimate (the "maximum likelihood estimate"):

$$
\begin{aligned}
P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) & =\frac{\operatorname{Count}\left(w_{i}, w_{i-2}, w_{i-1}\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)} \\
P_{M L}(\text { laughs } \mid \text { the, dog }) & =\frac{\operatorname{Count}(\text { the, dog, laughs })}{\operatorname{Count}(\text { the, dog })}
\end{aligned}
$$

Evaluating a Language Model

- We have some test data, n sentences

$$
S_{1}, S_{2}, S_{3}, \ldots, S_{n}
$$

- We could look at the probability under our model $\prod_{i=1}^{n} P\left(S_{i}\right)$. Or more conveniently, the log probability

$$
\log \prod_{i=1}^{n} P\left(S_{i}\right)=\sum_{i=1}^{n} \log P\left(S_{i}\right)
$$

- In fact the usual evaluation measure is perplexity

$$
\text { Perplexity }=2^{-x} \quad \text { where } \quad x=\frac{1}{W} \sum_{i=1}^{n} \log P\left(S_{i}\right)
$$

and W is the total number of words in the test data.

Some Intuition about Perplexity

- Say we have a vocabulary \mathcal{V}, of size $N=|\mathcal{V}|$ and model that predicts

$$
P(w)=\frac{1}{N}
$$

for all $w \in \mathcal{V}$.

- Easy to calculate the perplexity in this case:

$$
\begin{gathered}
\quad \text { Perplexity }=2^{-x} \quad \text { where } \quad x=\log \frac{1}{N} \\
\Rightarrow \quad \text { Perplexity }=N
\end{gathered}
$$

Perplexity is a measure of effective "branching factor"

Some History

- Shannon conducted experiments on entropy of English i.e., how good are people at the perplexity game?
C. Shannon. Prediction and entropy of printed English. Bell Systems Technical Journal, 30:50-64, 1951.

Some History

- Chomsky (in Syntactic Structures (1957)):

Second, the notion "grammatical" cannot be identified with 'meaningful" or "significant" in any semantic sense. Sentences (1) and (2) are equally nonsensical, but any speaker of English will recognize that only the former is grammatical.
(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.
... Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical model for grammaticalness, these sentences will be ruled out on identical grounds as equally 'remote' from English. Yet (1), though nonsensical, is grammatical, while (2) is not. ...
(my emphasis)
Source: Chomsky, N. Syntactic Structures. The Hauge, Netherlands: Mouton \& Co., 1957, chapter 1, section 2.3.

Sparse Data Problems

A natural estimate (the "maximum likelihood estimate"):

$$
\begin{aligned}
& P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-2}, w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)} \\
& P_{M L}(\text { laughs } \mid \text { the }, \operatorname{dog})=\frac{\operatorname{Count}(\text { the, dog, laughs })}{\operatorname{Count}(\text { the }, \operatorname{dog})}
\end{aligned}
$$

Say our vocabulary size is $N=|\mathcal{V}|$, then there are N^{3} parameters in the model.
e.g., $N=20,000 \quad \Rightarrow \quad 20,000^{3}=8 \times 10^{12}$ parameters

The Bias-Variance Trade-Off

- (Unsmoothed) trigram estimate

$$
P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-2}, w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)}
$$

- (Unsmoothed) bigram estimate

$$
P_{M L}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-1}\right)}
$$

- (Unsmoothed) unigram estimate

$$
P_{M L}\left(w_{i}\right)=\frac{\operatorname{Count}\left(w_{i}\right)}{\operatorname{Count}()}
$$

How close are these different estimates to the "true" probability $P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$?

Linear Interpolation

- Take our estimate $\hat{P}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$ to be

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)= & \lambda_{1} \times P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) \\
& +\lambda_{2} \times P_{M L}\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{3} \times P_{M L}\left(w_{i}\right)
\end{aligned}
$$

where $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$, and $\lambda_{i} \geq 0$ for all i.

- Our estimate correctly defines a distribution:

$$
\begin{aligned}
& \sum_{w \in \mathcal{V}} \hat{P}\left(w \mid w_{i-2}, w_{i-1}\right) \\
& =\sum_{w \in \mathcal{V}}\left[\lambda_{1} \times P_{M L}\left(w \mid w_{i-2}, w_{i-1}\right)+\lambda_{2} \times P_{M L}\left(w \mid w_{i-1}\right)+\lambda_{3} \times P_{M L}(w)\right] \\
& =\lambda_{1} \sum_{w} P_{M L}\left(w \mid w_{i-2}, w_{i-1}\right)+\lambda_{2} \sum_{w} P_{M L}\left(w \mid w_{i-1}\right)+\lambda_{3} \sum_{w} P_{M L}(w) \\
& =\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& =1
\end{aligned}
$$

(Can show also that $\hat{P}\left(w \mid w_{i-2}, w_{i-1}\right) \geq 0$ for all $w \in \mathcal{V}$)

How to estimate the λ values?

- Hold out part of training set as "validation" data
- Define $\operatorname{Count}_{2}\left(w_{1}, w_{2}, w_{3}\right)$ to be the number of times the $\operatorname{trigram}\left(w_{1}, w_{2}, w_{3}\right)$ is seen in validation set
- Choose $\lambda_{1}, \lambda_{2}, \lambda_{3}$ to maximize:

$$
L\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\sum_{w_{1}, w_{2}, w_{3} \in \mathcal{V}} \operatorname{Count}_{2}\left(w_{1}, w_{2}, w_{3}\right) \log \hat{P}\left(w_{3} \mid w_{1}, w_{2}\right)
$$

such that $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$, and $\lambda_{i} \geq 0$ for all i, and where

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)= & \lambda_{1} \times P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) \\
& +\lambda_{2} \times P_{M L}\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{3} \times P_{M L}\left(w_{i}\right)
\end{aligned}
$$

An Iterative Method

Initialization: Pick arbitrary/random values for $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
Step 1: Calculate the following quantities:

$$
\begin{aligned}
& c_{1}=\sum_{w_{1}, w_{2}, w_{3} \in \mathcal{V}} \frac{\operatorname{Count}_{2}\left(w_{1}, w_{2}, w_{3}\right) \lambda_{1} P_{M L}\left(w_{3} \mid w_{1}, w_{2}\right)}{\lambda_{1} P_{M L}\left(w_{3} \mid w_{1}, w_{2}\right)+\lambda_{2} P_{M L}\left(w_{3} \mid w_{2}\right)+\lambda_{3} P_{M L}\left(w_{3}\right)} \\
& c_{2}=\sum_{w_{1}, w_{2}, w_{3} \in \mathcal{V}} \frac{\operatorname{Count}_{2}\left(w_{1}, w_{2}, w_{3}\right) \lambda_{2} P_{M L}\left(w_{3} \mid w_{2}\right)}{\lambda_{1} P_{M L}\left(w_{3} \mid w_{1}, w_{2}\right)+\lambda_{2} P_{M L}\left(w_{3} \mid w_{2}\right)+\lambda_{3} P_{M L}\left(w_{3}\right)} \\
& c_{3}=\sum_{w_{1}, w_{2}, w_{3} \in \mathcal{V}} \frac{\operatorname{Count}_{2}\left(w_{1}, w_{2}, w_{3}\right) \lambda_{3} P_{M L}\left(w_{3}\right)}{\lambda_{1} P_{M L}\left(w_{3} \mid w_{1}, w_{2}\right)+\lambda_{2} P_{M L}\left(w_{3} \mid w_{2}\right)+\lambda_{3} P_{M L}\left(w_{3}\right)}
\end{aligned}
$$

Step 2: Re-estimate λ_{i} 's as

$$
\lambda_{1}=\frac{c_{1}}{c_{1}+c_{2}+c_{3}}, \quad \lambda_{2}=\frac{c_{2}}{c_{1}+c_{2}+c_{3}}, \quad \lambda_{3}=\frac{c_{3}}{c_{1}+c_{2}+c_{3}}
$$

Step 3: If λ_{i} 's have not converged, go to Step 1.

Allowing the λ 's to vary

- Take a function Φ that partitions histories
e.g.,

$$
\Phi\left(w_{i-2}, w_{i-1}\right)= \begin{cases}1 & \text { If } \operatorname{Count}\left(w_{i-1}, w_{i-2}\right)=0 \\ 2 & \text { If } 1 \leq \operatorname{Count}\left(w_{i-1}, w_{i-2}\right) \leq 2 \\ 3 & \text { If } 3 \leq \operatorname{Count}\left(w_{i-1}, w_{i-2}\right) \leq 5 \\ 4 & \text { Otherwise }\end{cases}
$$

- Introduce a dependence of the λ 's on the partition:

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)= & \lambda_{1}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \times P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) \\
& +\lambda_{2}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \times P_{M L}\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{3}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \times P_{M L}\left(w_{i}\right)
\end{aligned}
$$

where $\lambda_{1}^{\Phi\left(w_{i-2}, w_{i-1}\right)}+\lambda_{2}^{\Phi\left(w_{i-2}, w_{i-1}\right)}+\lambda_{3}^{\Phi\left(w_{i-2}, w_{i-1}\right)}=1$, and $\lambda_{i}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \geq 0$ for all i.

- Our estimate correctly defines a distribution:

$$
\begin{aligned}
& \sum_{w \in \mathcal{V}} \hat{P}\left(w \mid w_{i-2}, w_{i-1}\right) \\
& =\sum_{w \in \mathcal{V}}\left[\lambda_{1}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \times P_{M L}\left(w \mid w_{i-2}, w_{i-1}\right)\right. \\
& \quad+\lambda_{2}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \times P_{M L}\left(w \mid w_{i-1}\right) \\
& \left.\quad+\lambda_{3}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \times P_{M L}(w)\right] \\
& = \\
& \quad \lambda_{1}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \sum_{w} P_{M L}\left(w \mid w_{i-2}, w_{i-1}\right) \\
& \quad+\lambda_{2}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \sum_{w} P_{M L}\left(w \mid w_{i-1}\right) \\
& \quad+\lambda_{3}^{\Phi\left(w_{i-2}, w_{i-1}\right)} \sum_{w} P_{M L}(w) \\
& = \\
& =
\end{aligned}
$$

An Alternative Definition of the λ 's

- A small change: take our estimate $\hat{P}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$ to be $\hat{P}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=$

$$
\begin{aligned}
& \lambda_{1} \times P_{M L}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) \\
& +\left(1-\lambda_{1}\right)\left[\lambda_{2} \times P_{M L}\left(w_{i} \mid w_{i-1}\right)+\left(1-\lambda_{2}\right) \times P_{M L}\left(w_{i}\right)\right]
\end{aligned}
$$

where $0 \leq \lambda_{1} 1$, and $0 \leq \lambda_{2} \leq 1$.

- Next, define

$$
\lambda_{1}=\frac{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)}{\alpha+\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)} \quad \lambda_{2}=\frac{\operatorname{Count}\left(w_{i-1}\right)}{\alpha+\operatorname{Count}\left(w_{i-1}\right)}
$$

where α is a parameter chosen to optimize probability of a development set.

An Alternative Definition of the λ 's (continued)

- Define

$$
\begin{aligned}
U\left(w_{i-2}, w_{i-1}\right) & =\left|\left\{w: \operatorname{Count}\left(w_{i-2}, w_{i-1}, w\right)>0\right\}\right| \\
U\left(w_{i-1}\right) & =\left|\left\{w: \operatorname{Count}\left(w_{i-1}, w\right)>0\right\}\right|
\end{aligned}
$$

- Next, define

$$
\begin{aligned}
\lambda_{1} & =\frac{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)}{\alpha U\left(w_{i-2}, w_{i-1}\right)+\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)} \\
\lambda_{2} & =\frac{\operatorname{Count}\left(w_{i-1}\right)}{\alpha U\left(w_{i-1}\right)+\operatorname{Count}\left(w_{i-1}\right)}
\end{aligned}
$$

where α is a parameter chosen to optimize probability of a development set.

Discounting Methods

- Say we've seen the following counts:

x	Count (x)	$P_{M L}\left(w_{i} \mid w_{i-1}\right)$
the	48	
the, dog	15	$15 / 48$
the, woman	11	$11 / 48$
the, man	10	$10 / 48$
the, park	5	$5 / 48$
the, job	2	$2 / 48$
the, telescope	1	$1 / 48$
the, manual	1	$1 / 48$
the, afternoon	1	$1 / 48$
the, country	1	$1 / 48$
the, street	1	$1 / 48$

- The maximum-likelihood estimates are systematically high (particularly for low count items)

Discounting Methods

- Now define "discounted" counts, for example (a first, simple definition):

$$
\operatorname{Count}^{*}(x)=\operatorname{Count}(x)-0.5
$$

- New estimates:

x	$\operatorname{Count}(x)$	$\operatorname{Count}^{*}(x)$	$\frac{\operatorname{Count}^{*}(x)}{\operatorname{Count}(x)}$
the	48		
the, dog	15	14.5	$14.5 / 48$
the, woman	11	10.5	$10.5 / 48$
the, man	10	9.5	$9.5 / 48$
the, park	5	4.5	$4.5 / 48$
the, job	2	1.5	$1.5 / 48$
the, telescope	1	0.5	$0.5 / 48$
the, manual	1	0.5	$0.5 / 48$
the, afternoon	1	0.5	$0.5 / 48$
the, country	1	0.5	$0.5 / 48$
the, street	1	0.5	$0.5 / 48$

- We now have some "missing probability mass":

$$
\alpha\left(w_{i-1}\right)=1-\sum_{w} \frac{\operatorname{Count}^{*}\left(w_{i-1}, w\right)}{\operatorname{Count}\left(w_{i-1}\right)}
$$

e.g., in our example, $\alpha($ the $)=10 \times 0.5 / 48=5 / 48$

- Divide the remaining probability mass between words w for which Count $\left(w_{i-1}, w\right)=0$.

Katz Back-Off Models (Bigrams)

- For a bigram model, define two sets

$$
\begin{aligned}
\mathcal{A}\left(w_{i-1}\right) & =\left\{w: \operatorname{Count}\left(w_{i-1}, w\right)>0\right\} \\
\mathcal{B}\left(w_{i-1}\right) & =\left\{w: \operatorname{Count}\left(w_{i-1}, w\right)=0\right\}
\end{aligned}
$$

- A bigram model

$$
P_{K A T Z}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\operatorname{Count}^{*}\left(w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-1}\right)} & \text { If } w_{i} \in \mathcal{A}\left(w_{i-1}\right) \\ \alpha\left(w_{i-1}\right) \frac{P_{M L}\left(w_{i}\right)}{\sum_{w \in \mathcal{B}\left(w_{i-1}\right)} P_{M L}(w)} & \text { If } w_{i} \in \mathcal{B}\left(w_{i-1}\right)\end{cases}
$$

where

$$
\alpha\left(w_{i-1}\right)=1-\sum_{w \in \mathcal{A}\left(w_{i-1}\right)} \frac{\operatorname{Count}^{*}\left(w_{i-1}, w\right)}{\operatorname{Count}\left(w_{i-1}\right)}
$$

Katz Back-Off Models (Trigrams)

- For a trigram model, first define two sets

$$
\begin{aligned}
\mathcal{A}\left(w_{i-2}, w_{i-1}\right) & =\left\{w: \operatorname{Count}\left(w_{i-2}, w_{i-1}, w\right)>0\right\} \\
\mathcal{B}\left(w_{i-2}, w_{i-1}\right) & =\left\{w: \operatorname{Count}\left(w_{i-2}, w_{i-1}, w\right)=0\right\}
\end{aligned}
$$

- A trigram model is defined in terms of the bigram model:

$$
P_{K A T Z}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\left\{\begin{array}{l}
\frac{\operatorname{Count}^{*}\left(w_{i-2}, w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)} \\
\text { If } w_{i} \in \mathcal{A}\left(w_{i-2}, w_{i-1}\right) \\
\frac{\alpha\left(w_{i-2}, w_{i-1}\right) P_{K A T Z}\left(w_{i} \mid w_{i-1}\right)}{\sum_{w \in \mathcal{B}\left(w_{i-2}, w_{i-1}\right)} P_{K A T Z}\left(w \mid w_{i-1}\right)} \\
\text { If } w_{i} \in \mathcal{B}\left(w_{i-2}, w_{i-1}\right)
\end{array}\right.
$$

where

$$
\alpha\left(w_{i-2}, w_{i-1}\right)=1-\sum_{w \in \mathcal{A}\left(w_{i-2}, w_{i-1}\right)} \frac{\operatorname{Count}^{*}\left(w_{i-2}, w_{i-1}, w\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)}
$$

Good-Turing Discounting

- Invented during WWII by Alan Turing (and Good?), later published by Good. Frequency estimates were needed within the Enigma code-breaking effort.
- Define $n_{r}=$ number of elements x for which $\operatorname{Count}(x)=r$.
- Modified count for any x with $\operatorname{Count}(x)=r$ and $r>0$:

$$
(r+1) \frac{n_{r+1}}{n_{r}}
$$

- Leads to the following estimate of "missing mass":

$$
\frac{n_{1}}{N}
$$

where N is the size of the sample. This is the estimate of the probability of seeing a new element x on the $(N+1)^{\prime}$ 'th draw.

Summary

- Three steps in deriving the language model probabilities:

1. Expand $P\left(w_{1}, w_{2} \ldots w_{n}\right)$ using Chain rule.
2. Make Markov Independence Assumptions $P\left(w_{i} \mid w_{1}, w_{2} \ldots w_{i-2}, w_{i-1}\right)=P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
3. Smooth the estimates using low order counts.

- Other methods used to improve language models:
- "Topic" or "long-range" features.
- Syntactic models.

It's generally hard to improve on trigram models, though!!

Further Reading

See:

"An Empirical Study of Smoothing Techniques for Language Modeling". Stanley Chen and Joshua Goodman. 1998. Harvard Computer Science Technical report TR-10-98.
(Gives a very thorough evaluation and description of a number of methods.)
"On the Convergence Rate of Good-Turing Estimators". David McAllester and Robert E. Schapire. In Proceedings of COLT 2000. (A pretty technical paper, giving confidence-intervals on GoodTuring estimators. Theorems 1, 3 and 9 are useful in understanding the motivation for Good-Turing discounting.)

A Probabilistic Context-Free Grammar

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow woman	0.2	
NN	\Rightarrow telescope	0.1	
DT	\Rightarrow the	1.0	
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

- Probability of a tree with rules $\alpha_{i} \rightarrow \beta_{i}$ is $\prod_{i} P\left(\alpha_{i} \rightarrow \beta_{i} \mid \alpha_{i}\right)$

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow \mathrm{NP}$ VP	1.0
NP VP	$\mathrm{NP} \rightarrow$ DT N	0.3
DT N VP	$\mathrm{DT} \rightarrow$ the	1.0
the N VP	$\mathrm{N} \rightarrow \operatorname{dog}$	0.1
the dog VP	$\mathrm{VP} \rightarrow \mathrm{VB}$	0.4
the dog VB	$\mathrm{VB} \rightarrow$ laughs	0.5
the dog laughs		

TOTAL PROBABILITY $=1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parsetree, allowed by the underlying CFG
- Say we have a sentence S, set of derivations for that sentence is $\mathcal{T}(S)$. Then a PCFG assigns a probability to each member of $\mathcal{T}(S)$. i.e., we now have a ranking in order of probability.
- The probability of a string S is

$$
\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

Deriving a PCFG from a Corpus

- Given a set of example trees, the underlying CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$
P_{M L}(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

where the counts are taken from a training set of example trees.

- If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

PCFGs

Booth and Thompson (73) showed that a CFG with rule probabilities correctly defines a distribution over the set of derivations provided that:

1. The rule probabilities define conditional distributions over the different ways of rewriting each non-terminal.
2. A technical condition on the rule probabilities ensuring that the probability of the derivation terminating in a finite number of steps is 1 . (This condition is not really a practical concern.)

Algorithms for PCFGs

- Given a PCFG and a sentence S, defi ne $\mathcal{T}(S)$ to be the set of trees with S as the yield.
- Given a PCFG and a sentence S, how do we fi nd

$$
\arg \max _{T \in \mathcal{T}(S)} P(T, S)
$$

- Given a PCFG and a sentence S, how do we fi nd

$$
P(S)=\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

Chomsky Normal Form

A context free grammar $G=(N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
- $X \rightarrow Y_{1} Y_{2}$ for $X \in N$, and $Y_{1}, Y_{2} \in N$
- $X \rightarrow Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

- Given a PCFG and a sentence S, how do we find

$$
\max _{T \in \mathcal{T}(S)} P(T, S)
$$

- Notation:

$$
\begin{array}{ll}
& n=\text { number of words in the sentence } \\
& N_{k} \text { for } k=1 \ldots K \text { is } k \text { 'th non-terminal } \\
\text { w.l.g., } & N_{1}=S \text { (the start symbol) }
\end{array}
$$

- Define a dynamic programming table
$\pi[i, j, k]=$ maximum probability of a constituent with non-terminal N_{k} spanning words $i \ldots j$ inclusive
- Our goal is to calculate $\max _{T \in \mathcal{T}(S)} P(T, S)=\pi[1, n, 1]$

A Dynamic Programming Algorithm

- Base case definition: for all $i=1 \ldots n$, for $k=1 \ldots K$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

(note: define $P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)=0$ if $N_{k} \rightarrow w_{i}$ is not in the grammar)

- Recursive definition: for all $i=1 \ldots n, j=(i+1) \ldots n, k=1 \ldots K$,

$$
\begin{aligned}
\pi[i, j, k]= & \max ^{i \leq s<j} \quad\left\{P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right) \times \pi[i, s, l] \times \pi[s+1, j, m]\right\} \\
& 1 \leq l \leq K \\
& 1 \leq m \leq K
\end{aligned}
$$

(note: define $P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right)=0$ if $N_{k} \rightarrow N_{l} N_{m}$ is not in the grammar)

Initialization:

For $\mathrm{i}=1 \ldots \mathrm{n}, \mathrm{k}=1 \ldots \mathrm{~K}$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

Main Loop:

For length $=1 \ldots(n-1), i=1 \ldots(n-1$ ength $), k=1 \ldots K$
$j \leftarrow i+$ length
$\max \leftarrow 0$
For $s=i \ldots(j-1)$,
For N_{l}, N_{m} such that $N_{k} \rightarrow N_{l} N_{m}$ is in the grammar
prob $\leftarrow P\left(N_{k} \rightarrow N_{l} N_{m}\right) \times \pi[i, s, l] \times \pi[s+1, j, m]$
If prob $>\max$
$\max \leftarrow$ prob
//Store backpointers which imply the best parse

$$
\operatorname{Split}(i, j, k)=\{s, l, m\}
$$

$$
\pi[i, j, k]=\max
$$

A Dynamic Programming Algorithm for the Sum

- Given a PCFG and a sentence S, how do we find

$$
\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

- Notation:

$$
\begin{array}{ll}
& n=\text { number of words in the sentence } \\
& N_{k} \text { for } k=1 \ldots K \text { is } k \text { 'th non-terminal } \\
\text { w.l.g., } & N_{1}=S \text { (the start symbol) }
\end{array}
$$

- Define a dynamic programming table

$$
\begin{aligned}
\pi[i, j, k]= & \text { sum of probability of parses with root label } N_{k} \\
& \text { spanning words } i \ldots j \text { inclusive }
\end{aligned}
$$

- Our goal is to calculate $\sum_{T \in \mathcal{T}(S)} P(T, S)=\pi[1, n, 1]$

A Dynamic Programming Algorithm for the Sum

- Base case definition: for all $i=1 \ldots n$, for $k=1 \ldots K$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

(note: define $P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)=0$ if $N_{k} \rightarrow w_{i}$ is not in the grammar)

- Recursive definition: for all $i=1 \ldots n, j=(i+1) \ldots n, k=1 \ldots K$,

$$
\pi[i, j, k]=\sum_{\substack{i \leq s<j \\ 1 \leq l \leq K \\ 1 \leq m \leq K}}\left\{P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right) \times \pi[i, s, l] \times \pi[s+1, j, m]\right\}
$$

(note: define $P\left(N_{k} \rightarrow N_{l} N_{m} \mid N_{k}\right)=0$ if $N_{k} \rightarrow N_{l} N_{m}$ is not in the grammar)

Initialization:

For $\mathrm{i}=1 \ldots \mathrm{n}, \mathrm{k}=1 \ldots \mathrm{~K}$

$$
\pi[i, i, k]=P\left(N_{k} \rightarrow w_{i} \mid N_{k}\right)
$$

Main Loop:

For length $=1 \ldots(n-1), i=1 \ldots(n-1$ ength $), k=1 \ldots K$ $j \leftarrow i+$ length
sum $\leftarrow 0$
For $s=i \ldots(j-1)$,
For N_{l}, N_{m} such that $N_{k} \rightarrow N_{l} N_{m}$ is in the grammar

$$
\begin{aligned}
\text { prob } & \leftarrow P\left(N_{k} \rightarrow N_{l} N_{m}\right) \times \pi[i, s, l] \times \pi[s+1, j, m] \\
\text { sum } & \leftarrow \operatorname{sum}+\text { prob } \\
\pi[i, j, k] & =\text { sum }
\end{aligned}
$$

