
6.864: Lecture 3 (September 15, 2005)

Smoothed Estimation, and Language Modeling




Overview


• The language modeling problem 

• Smoothed “n-gram” estimates 



The Language Modeling Problem


• We have some vocabulary, 
say V = {the, a, man, telescope, Beckham, two, . . .} 

• We have an (infinite) set of strings, V � 

the

a

the fan

the fan saw Beckham

the fan saw saw

. . . 
the fan saw Beckham play for Real Madrid 
. . . 



� 

The Language Modeling Problem (Continued)


• We have a training sample of example sentences in English 

• We need to “learn” a probability distribution P̂
i.e., P̂ is a function that satisfies 

P̂ (x) = 1, P̂ (x) � 0 for all x � V� 

x�V � 

P̂ (the) = 10−12


ˆ
P (the fan) = 10−8


ˆ
P (the fan saw Beckham) = 2 × 10−8


ˆ
P (the fan saw saw) = 10−15 

. . . 
P̂ (the fan saw Beckham play for Real Madrid) = 2 × 10−9


. . .


• Usual assumption: training sample is drawn from some 
ˆunderlying distribution P , we want P to be “as close” to P 

as possible. 



Why on earth would we want to do this?!


• Speech recognition was the original motivation. 
(Related problems are optical character recognition, handwriting 
recognition.) 

• The estimation techniques developed for this problem will be 
VERY useful for other problems in NLP 



Deriving a Trigram Probability Model


Step 1: Expand using the chain rule: 

P (w1, w2, . . . , wn) =	P (w1 | START) 
×P (w2 | START, w1) 
×P (w3 | START, w1, w2) 
×P (w4 | START, w1, w2, w3) 
. . . 
×P (wn | START, w1, w2, . . . , wn−1) 
×P (STOP | START, w1, w2, . . . , wn−1, wn) 

For Example 

P (the, dog, laughs) =	P (the | START)

×P (dog | START, the)

×P (laughs | START, the, dog)

×P (STOP | START, the, dog, laughs)




Deriving a Trigram Probability Model


Step 2: Make Markov independence assumptions: 

P (w1, w2, . . . , wn) =	 P (w1 | START)

×P (w2 | START, w1)

×P (w3 | w1, w2)

. . .

×P (wn | wn−2, wn−1)

×P (STOP | wn−1, wn)


General assumption: 

P (wi | START, w1, w2, . . . , wi−2, wi−1) = P (wi | wi−2, wi−1) 

For Example 

P (the, dog, laughs) =	 P (the | START)

×P (dog | START, the)

×P (laughs | the, dog)

×P (STOP | dog, laughs)




The Trigram Estimation Problem


Remaining estimation problem: 

P (wi | wi−2, wi−1) 

For example: 

P (laughs | the, dog) 

A natural estimate (the “maximum likelihood estimate”): 

Count(wi, wi−2, wi−1)
PML(wi | wi−2, wi−1) = 

Count(wi−2, wi−1) 

Count(the, dog, laughs)
PML(laughs | the, dog) = 

Count(the, dog) 



Evaluating a Language Model


• We have some test data, n sentences 

S1, S2, S3, . . . , Sn 

n • We could look at the probability under our model 
⎩ 

P (Si).i=1 
Or more conveniently, the log probability 

n n 
⎧ � 

log P (Si) = log P (Si) 
i=1 i=1 

• In fact the usual evaluation measure is perplexity 

n1 � 
Perplexity = 2−x where x = log P (Si)

W 
i=1 

and W is the total number of words in the test data. 



Some Intuition about Perplexity


• Say we have a vocabulary V , of size N = |V| 
and model that predicts 

1 
P (w) = 

N


for all w � V .


• Easy to calculate the perplexity in this case: 

−xPerplexity = 2 where x = log 
N 

∈ 
Perplexity = N 

Perplexity is a measure of effective “branching factor” 

1 



Some History


• Shannon conducted experiments on entropy of English 
i.e., how good are people at the perplexity game? 

C. Shannon. Prediction and entropy of printed 
English. Bell Systems Technical Journal, 30:50–64, 
1951. 



Some History

• Chomsky (in Syntactic Structures (1957)): 

Second, the notion “grammatical” cannot be identified with 
“meaningful” or “significant” in any semantic sense. Sentences 
(1) and (2) are equally nonsensical, but any speaker of English 
will recognize that only the former is grammatical. 

(1) Colorless green ideas sleep furiously. 
(2) Furiously sleep ideas green colorless. 
. . . 
. . . Third, the notion “grammatical in English” cannot be 
identified in any way with the notion “high order of statistical 
approximation to English”. It is fair to assume that neither 
sentence (1) nor (2) (nor indeed any part of these sentences) has 
ever occurred in an English discourse. Hence, in any statistical 
model for grammaticalness, these sentences will be ruled out 
on identical grounds as equally ‘remote’ from English. Yet (1), 
though nonsensical, is grammatical, while (2) is not. . . . 

(my emphasis) 

Source: Chomsky, N. Syntactic Structures. 
 1957,  chapter 1, section 2.3 . 

The Hauge, Netherlands: Mouton & Co.,



Sparse Data Problems


A natural estimate (the “maximum likelihood estimate”): 

P
Count(wi−2 , wi−1 , wi ) 

M L (wi | wi−2 , wi−1) = 
Count(wi−2, wi−1) 

Count(the, dog, laughs)
PM L (laughs | the, dog) = 

Count(the, dog) 

Say our vocabulary size is N = |V|, 
then there are N 3 parameters in the model. 

e.g., N = 20, 000 ∈ 20, 0003 = 8 × 1012 parameters 



The Bias-Variance Trade-Off


• (Unsmoothed) trigram estimate


Count(wi−2, wi−1, wi)

PML(wi | wi−2, wi−1) = 

Count(wi−2, wi−1) 

• (Unsmoothed) bigram estimate


Count(wi−1, wi)

PML(wi | wi−1) = 

Count(wi−1) 

•	 (Unsmoothed) unigram estimate


Count(wi)

PML(wi) = 

Count() 

How close are these different estimates to the “true” probability 
P (wi | wi−2, wi−1)? 



Linear Interpolation


• Take our estimate P̂ (wi | wi−2, wi−1) to be 

P̂ (wi | wi−2, wi−1) = �1 × PML(wi | wi−2, wi−1) 
+�2 × PML(wi | wi−1) 
+�3 × PML(wi) 

where �1 + �2 + �3 = 1, and �i � 0 for all i. 



• Our estimate correctly defines a distribution: 
⎨ 

P̂ (w | wi−2, wi−1)w�V 

⎨ 
= 

w�V [�1 × PM L(w | wi−2 , wi−1) + �2 × PM L (w | wi−1) + �3 × PM L(w)] 

⎨ ⎨ ⎨

= �1 PM L (w | wi−2, wi−1) + �2 w PM L (w | wi−1) + �3 PM L(w)

w w 

= �1 + �2 + �3 

= 1 

(Can show also that P̂ (w | wi−2, wi−1) � 0 for all w � V) 



� 

How to estimate the � values?


• Hold out part of training set as “validation” data 

• Define Count2(w1, w2, w3) to be the number of times the 
trigram (w1, w2, w3) is seen in validation set 

• Choose �1, �2, �3 to maximize: 

L(�1, �2, �3) = Count2(w1, w2, w3) log P̂ (w3 | w1, w2) 
w1,w2 ,w3�V 

such that �1 + �2 + �3 = 1, and �i � 0 for all i, and where 

P̂ (wi | wi−2, wi−1) = �1 × PML(wi | wi−2, wi−1)

+�2 × PML(wi | wi−1)

+�3 × PML(wi)




An Iterative Method


Initialization: Pick arbitrary/random values for �1, �2, �3. 

Step 1: Calculate the following quantities: 
� Count2 (w1, w2, w3)�1PML(w3 | w1, w2) 

c1 =

�1PML(w3 | w1 , w2) + �2PML(w3 | w2) + �3PML(w3)


w1 ,w2 ,w3 �V 

� Count2 (w1 , w2, w3 )�2PML(w3 | w2 ) 
c2 =


�1PML(w3 | w1 , w2) + �2PML(w3 | w2) + �3PML(w3)

w1 ,w2 ,w3 �V 

� Count2(w1, w2 , w3)�3 PML(w3) 
c3 =


�1PML(w3 | w1 , w2) + �2PML(w3 | w2) + �3PML(w3)

w1 ,w2 ,w3 �V 

Step 2: Re-estimate �i’s as 

c1 c2 c3
�1 = , �2 = , �3 = 

c1 + c2 + c3 c1 + c2 + c3 c1 + c2 + c3 

Step 3: If �i’s have not converged, go to Step 1. 



� 
� 
� 

� 
� 

Allowing the �’s to vary


• Take a function � that partitions histories 
e.g., 

� 1 If Count(wi−1, wi−2) = 0 
� 2 If 1 � Count(wi−1, wi−2) � 2 

�(wi−2, wi−1) = 
� 3 If 3 � Count(wi−1, wi−2) � 5 
⎪ 4 Otherwise 

• Introduce a dependence of the �’s on the partition: 

P̂ (wi | wi−2, wi−1) = �
�(wi−2,wi−1) 

× PM L(wi | wi−2, wi−1)1 

+�
�(wi−2,wi−1) 
2 × PM L(wi | wi−1) 

+�
�(wi−2,wi−1) 
3 × PM L(wi) 

+ �
�(wi−2 ,wi−1 ) 

+ �
�(wi−2,wi−1)where ��(wi−2 ,wi−1 )

2 = 1, and 1 3


�
�(wi−2,wi−1)


� 0 for all i.i 



• Our estimate correctly defines a distribution: 
⎨ 

P̂ (w | wi−2, wi−1)w�V 

⎨ �(wi−2 ,wi−1 ) 
= 

w�V [ �1 × PM L (w | wi−2, wi−1) 
�(wi−2 ,wi−1 )+�2 × PM L(w | wi−1 ) 
�(wi−2 ,wi−1 )+�3 × PM L(w)] 

⎨�(wi−2 ,wi−1 ) 
= �1 w PM L(w | wi−2, wi−1) 

⎨�(wi−2 ,wi−1 )+�2 w PM L(w | wi−1) 
⎨�(wi−2 ,wi−1 )+�3 w PM L(w) 

�(wi−2 ,wi−1 ) �(wi−2 ,wi−1 ) �(wi−2 ,wi−1 ) 
= �1 + �2 + �3 

= 1 



An Alternative Definition of the �’s


• A small change: take our estimate P̂ (wi | wi−2, wi−1) to be 

P̂ (wi | wi−2, wi−1) = 

�1 × PML(wi | wi−2, wi−1) 

+(1 − �1)[�2 × PML(wi | wi−1) +(1 − �2) × PML(wi)] 

where 0 � �11, and 0 � �2 � 1. 

•	 Next, define 

Count(wi−2, wi−1) Count(wi−1)
�1 =	 �2 = 

� + Count(wi−2, wi−1)	 � + Count(wi−1) 

where � is a parameter chosen to optimize probability of a 
development set. 



An Alternative Definition of the �’s (continued)


• Define 

U(wi−2, wi−1) = |{w : Count(wi−2, wi−1, w) > 0}| 

U(wi−1) = |{w : Count(wi−1, w) > 0}| 

•	 Next, define 

Count(wi−2, wi−1)
�1 = 

�U(wi−2, wi−1) + Count(wi−2, wi−1) 

Count(wi−1)
�2 = 

�U(wi−1) + Count(wi−1) 

where � is a parameter chosen to optimize probability of a 
development set. 



Discounting Methods


• Say we’ve seen the following counts: 

x Count(x) PML(wi | wi−1) 
the 48 

the, dog 15 15/48 
the, woman 11 11/48 
the, man 10 10/48 
the, park 5 5/48 
the, job 2 2/48 
the, telescope 1 1/48 
the, manual 1 1/48 
the, afternoon 1 1/48 
the, country 1 1/48 
the, street 1 1/48 

• The maximum-likelihood estimates are systematically high 
(particularly for low count items) 



Discounting Methods


•	 Now define “discounted” counts, for example (a first, simple definition): 

Count�(x) = Count(x) − 0.5 

• New estimates: 

x Count(x) Count�(x) Count� 
(x) 

Count(x) 

the 48 

the, dog 15 14.5 14.5/48 
the, woman 11 10.5 10.5/48 
the, man 10 9.5 9.5/48 
the, park 5 4.5 4.5/48 
the, job 2 1.5 1.5/48 
the, telescope 1 0.5 0.5/48 
the, manual 1 0.5 0.5/48 
the, afternoon 1 0.5 0.5/48 
the, country 1 0.5 0.5/48 
the, street 1 0.5 0.5/48 



• We now have some “missing probability mass”:


� Count�(wi−1, w)
�(wi−1) = 1− 

Count(wi−1)w 

e.g., in our example, �(the) = 10× 0.5/48 = 5/48 

• Divide the remaining probability mass between words w for 
which Count(wi−1, w) = 0. 



� 
� 
� 
� 

� 
� 
� 

Katz Back-Off Models (Bigrams)


• For a bigram model, define two sets 

A(wi−1) = {w : Count(wi−1, w) > 0} 

B(wi−1) = {w : Count(wi−1, w) = 0} 

• A bigram model 

Count� 
(wi−1,wi) If wi � A(wi−1) 

� Count(wi−1) 

PKAT Z (wi | wi−1) = 
⎨ 

⎪ �(wi−1) 
PML(wi) If wi � B(wi−1)PML(w)

w�B(wi−1) 

where 
� Count�(wi−1, w)

�(wi−1) = 1− 
Count(wi−1)w�A(wi−1) 



� 
� 
� 
� 
� 
� 

� 
� 
� 
� 

Katz Back-Off Models (Trigrams)


• For a trigram model, first define two sets 

A(wi−2, wi−1) = {w : Count(wi−2, wi−1, w) > 0} 

B(wi−2, wi−1) = {w : Count(wi−2, wi−1, w) = 0} 

• A trigram model is defined in terms of the bigram model: 

Count� 
(wi−2,wi−1,wi ) 

� Count(wi−2,wi−1) 
� If wi � A(wi−2, wi−1) 

PKAT Z (wi | wi−2, wi−1) = 
� �(wi−2,wi−1)PKAT Z (wi |wi−1) 

⎨ 
� PKAT Z (w|wi−1) 

w�B(wi−2,wi−1) 
⎪ 

If wi � B(wi−2, wi−1) 

where 
� Count�(wi−2, wi−1, w)

�(wi−2, wi−1) = 1− 
Count(wi−2, wi−1)w�A(wi−2 ,wi−1 ) 



Good-Turing Discounting


• Invented during WWII by Alan Turing (and Good?), later 
published by Good. Frequency estimates were needed within 
the Enigma code-breaking effort. 

• Define nr = number of elements x for which Count(x) = r. 

• Modified count for any x with Count(x) = r and r > 0: 
nr+1

(r + 1) 
nr 

• Leads to the following estimate of “missing mass”: 
n1 

N 
where N is the size of the sample. This is the estimate of the 
probability of seeing a new element x on the (N + 1)’th draw. 



Summary


• Three steps in deriving the language model probabilities: 

1. Expand P (w1, w2 . . . wn) using Chain rule. 

2. Make Markov Independence Assumptions 
P (wi | w1, w2 . . . wi−2, wi−1) = P (wi | wi−2, wi−1) 

3. Smooth the estimates using low order counts. 

• Other methods used to improve language models: 

– “Topic” or “long-range” features. 

– Syntactic models. 

It’s generally hard to improve on trigram models, though!! 



Further Reading


See: 

“An Empirical Study of Smoothing Techniques for Language 
Modeling”. Stanley Chen and Joshua Goodman. 1998. Harvard 
Computer Science Technical report TR-10-98. 
(Gives a very thorough evaluation and description of a number of 
methods.) 

“On the Convergence Rate of Good-Turing Estimators”. David 
McAllester and Robert E. Schapire. In Proceedings of COLT 2000. 
(A pretty technical paper, giving confidence-intervals on Good-
Turing estimators. Theorems 1, 3 and 9 are useful in understanding 
the motivation for Good-Turing discounting.) 



A Probabilistic Context-Free Grammar


S ∈ NP VP 1.0 
VP ∈ Vi 0.4 
VP ∈ Vt NP 0.4 
VP ∈ VP PP 0.2 
NP ∈ DT NN 0.3 
NP ∈ NP PP 0.7 
PP ∈ P NP 1.0 

Vi ∈ sleeps 1.0 
Vt ∈ saw 1.0 
NN ∈ man 0.7 
NN ∈ woman 0.2 
NN ∈ telescope 0.1 
DT ∈ the 1.0 
IN ∈ with 0.5 
IN ∈ in 0.5 

• Probability of a tree with rules �i ≥ �i is 
⎩ 

i P (�i ≥ �i|�i)




DERIVATION RULES USED PROBABILITY 
S S � NP VP 1.0 
NP VP NP � DT N 0.3 
DT N VP DT � the 1.0 
the N VP N � dog 0.1 
the dog VP VP � VB 0.4 
the dog VB VB � laughs 0.5 
the dog laughs 

TOTAL PROBABILITY = 1.0 × 0.3 × 1.0 × 0.1 × 0.4 × 0.5




� 

Properties of PCFGs


• Assigns a probability to each left-most derivation, or parse-
tree, allowed by the underlying CFG 

• Say we have a sentence S, set of derivations for that sentence 
is T (S). Then a PCFG assigns a probability to each member 
of T (S). i.e., we now have a ranking in order of probability. 

• The probability of a string S is 

P (T, S) 
T �T (S) 



Deriving a PCFG from a Corpus


•	 Given a set of example trees, the underlying CFG can simply be all rules 
seen in the corpus 

•	 Maximum Likelihood estimates: 

Count(� � �)
PML(� � � | �) = 

Count(�) 

where the counts are taken from a training set of example trees. 

•	 If the training data is generated by a PCFG, then as the training data 
size goes to infinity, the maximum-likelihood PCFG will converge to the 
same distribution as the “true” PCFG. 



PCFGs

Booth and Thompson (73) showed that a CFG with rule 
probabilities correctly defines a distribution over the set of 
derivations provided that: 

1. The rule probabilities define conditional distributions over the 
different ways of rewriting each non-terminal. 

2. A technical condition on the rule probabilities ensuring that 
the probability of the derivation terminating in a finite number 
of steps is 1. (This condition is not really a practical concern.) 



� 

Algorithms for PCFGs


• Given a PCFG and a sentence S, define T (S) to be 
the set of trees with S as the yield. 

• Given a PCFG and a sentence S, how do we find 

arg max P (T, S) 
T �T (S)


• Given a PCFG and a sentence S, how do we find


P (S) = P (T, S) 
T �T (S) 



Chomsky Normal Form


A context free grammar G = (N, �, R, S) in Chomsky Normal 
Form is as follows 

• N is a set of non-terminal symbols 

• � is a set of terminal symbols 

• R is a set of rules which take one of two forms: 

– X ≥ Y1Y2 for X � N , and Y1, Y2 � N 

– X ≥ Y for X � N , and Y � � 

• S � N is a distinguished start symbol 



A Dynamic Programming Algorithm

•	 Given a PCFG and a sentence S, how do we find 

max P (T, S) 
T �T (S) 

•	 Notation: 

n = number of words in the sentence 

Nk for k = 1 . . . K is k’th non-terminal 

w.l.g., N1 = S (the start symbol) 

• Define a dynamic programming table 

λ[i, j, k] = maximum probability of a constituent with non-terminal Nk 

spanning words i . . . j inclusive 

• Our goal is to calculate maxT �T (S) P (T, S) = λ[1, n, 1] 



A Dynamic Programming Algorithm


• Base case definition: for all i = 1 . . . n, for k = 1 . . . K 

λ[i, i, k] = P (Nk � wi | Nk ) 

(note: define P (Nk � wi | Nk ) = 0 if Nk � wi is not in the grammar) 

• Recursive definition: for all i = 1 . . . n, j = (i + 1) . . . n, k = 1 . . . K, 

λ[i, j, k] = max {P (Nk � NlNm | Nk ) × λ[i, s, l] × λ[s + 1, j, m]} 
i � s < j 
1 � l � K 
1 � m � K 

(note: define P (Nk � NlNm | Nk ) = 0 if Nk � NlNm is not in the

grammar)




Initialization: 
For i = 1 ... n, k = 1 ... K 

λ[i, i, k] = P (Nk ≥ wi|Nk ) 

Main Loop: 
For length = 1 . . . (n − 1), i = 1 . . . (n − 1ength), k = 1 . . . K 

j ≤ i + length 
max ≤ 0 
For s = i . . . (j − 1), 
For Nl, Nm such that Nk ≥ NlNm is in the grammar 

prob ≤ P (Nk ≥ NlNm)× λ[i, s, l]× λ[s + 1, j, m] 
If prob > max 

max ≤ prob 
//Store backpointers which imply the best parse 
Split(i, j, k) = {s, l, m}


λ[i, j, k] = max




� 

A Dynamic Programming Algorithm for the Sum

• Given a PCFG and a sentence S, how do we find 

P (T, S) 
T �T (S) 

•	 Notation:


n = number of words in the sentence


Nk for k = 1 . . . K is k’th non-terminal 

w.l.g., N1 = S (the start symbol) 

• Define a dynamic programming table 

λ[i, j, k] = sum of probability of parses with root label Nk 

spanning words i . . . j inclusive 

⎨ 
• Our goal is to calculate T �T (S) P (T, S) = λ[1, n, 1] 



� 

A Dynamic Programming Algorithm for the Sum


• Base case definition: for all i = 1 . . . n, for k = 1 . . . K 

λ[i, i, k] = P (Nk � wi | Nk ) 

(note: define P (Nk � wi | Nk ) = 0 if Nk � wi is not in the grammar) 

• Recursive definition: for all i = 1 . . . n, j = (i + 1) . . . n, k = 1 . . . K, 

λ[i, j, k] = {P (Nk � NlNm | Nk ) × λ[i, s, l] × λ[s + 1, j, m]} 

i � s < j

1 � l � K

1 � m � K


(note: define P (Nk � NlNm | Nk ) = 0 if Nk � NlNm is not in the 
grammar) 



Initialization: 
For i = 1 ... n, k = 1 ... K 

λ[i, i, k] = P (Nk ≥ wi|Nk ) 

Main Loop: 
For length = 1 . . . (n − 1), i = 1 . . . (n − 1ength), k = 1 . . . K 

j ≤ i + length 
sum ≤ 0 
For s = i . . . (j − 1), 
For Nl, Nm such that Nk ≥ NlNm is in the grammar 

prob ≤ P (Nk ≥ NlNm)× λ[i, s, l]× λ[s + 1, j, m] 
sum ≤ sum + prob 

λ[i, j, k] = sum 


