6.891: Lecture 4 (September 20, 2005) Parsing and Syntax II

Overview

- Weaknesses of PCFGs
- Heads in context-free rules
- Dependency representations of parse trees
- Two models making use of dependencies

Weaknesses of PCFGs

- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies

$$
\begin{aligned}
\mathrm{PROB}= & P(\mathrm{~S} \rightarrow \mathrm{NP} \mathrm{VP} \mid \mathrm{S}) & & \times P(\mathrm{NNP} \rightarrow I B M \mid \mathrm{NNP}) \\
& \times P(\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \mid \mathrm{VP}) & & \times P(\mathrm{Vt} \rightarrow \text { bought } \mid \mathrm{Vt}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & & \times P(\mathrm{NNP} \rightarrow \text { Lotus } \mid \mathrm{NNP}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & &
\end{aligned}
$$

Another Case of PP Attachment Ambiguity

(a)

(b)

If $P(\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} \mid \mathrm{NP})>P(\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \mid \mathrm{VP})$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity

(a)

(b)

(a)

Rules
NP \rightarrow NP CC NP
NP \rightarrow NP PP
NP \rightarrow NNS
PP \rightarrow IN NP
NP \rightarrow NNS
NP \rightarrow NNS
NNS \rightarrow dogs
IN \rightarrow in
NNS \rightarrow houses
CC \rightarrow and
NNS \rightarrow cats

(b)

Rules
NP \rightarrow NP CC NP
$\mathrm{NP} \rightarrow$ NP PP
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{PP} \rightarrow \mathrm{IN} \mathrm{NP}$
$\mathrm{NP} \rightarrow$ NSS
$\mathrm{NP} \rightarrow$ NNS
$\mathrm{NNS} \rightarrow$ dogs
$\mathrm{IN} \rightarrow$ in
$\mathrm{NNS} \rightarrow$ houses
$\mathrm{CC} \rightarrow$ and
$\mathrm{NNS} \rightarrow$ cats

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

(a)

(b)

- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.

Structural Preferences: Close Attachment

Previous example: John was believed to have been shot by Bill
Here the low attachment analysis (Bill does the shooting) contains same rules as the high attachment analysis (Bill does the believing), so the two analyses receive same probability.

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{DT}=$ determiner, $\mathrm{Vi}=$ intransitive verb, $\mathrm{Vt}=$ =transitive verb, $\mathrm{NN}=$ noun, $\mathrm{IN}=$ preposition

More about Heads

- Each context-free rule has one "special" child that is the head of the rule. e.g.,

S	\Rightarrow	NP	VP		(VP is the head)
VP	\Rightarrow	Vt	NP		(Vt is the head)
NP	\Rightarrow	DT	NN	NN	(NN is the head)

- A core idea in linguistics (X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
- The central sub-constituent of each rule.
- The semantic predicate in each rule.

Rules which Recover Heads: An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP
Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD
Else Choose the rightmost child
e.g.,
$\mathrm{NP} \Rightarrow$ DT NNP NN
$\mathrm{NP} \Rightarrow \mathrm{DT}$ NN NNP
$\mathrm{NP} \Rightarrow \mathrm{NP} \quad \mathrm{PP}$
$\mathrm{NP} \Rightarrow \mathrm{DT} \quad \mathrm{JJ}$
$\mathrm{NP} \Rightarrow \mathrm{DT}$

Rules which Recover Heads: An Example of rules for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt
Else If the rule contains an VP: Choose the leftmost VP
Else Choose the leftmost child

$$
\begin{array}{llll}
\text { e.g., } & & & \\
\text { VP } & \Rightarrow & \text { Vt } & \text { NP } \\
\text { VP } & \Rightarrow & \text { VP } & \text { PP }
\end{array}
$$

Adding Headwords to Trees

Adding Headwords to Trees

- A constituent receives its headword from its head child.

S	\Rightarrow	NP	VP		(S receives headword from VP)
VP	\Rightarrow	Vt	NP		(VP receives headword from Vt)
NP	\Rightarrow	DT		NN	
			(NP receives headword from NN)		

Chomsky Normal Form

A context free grammar $G=(N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
- $X \rightarrow Y_{1} Y_{2}$ for $X \in N$, and $Y_{1}, Y_{2} \in N$
- $X \rightarrow Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this form, in $O\left(n^{3}|R|\right)$ time where n is the length of the string being parsed, and $|R|$ is the number of rules in the grammar (see the dynamic programming algorithm in the previous notes)

A New Form of Grammar

We define the following type of "lexicalized" grammar:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of three forms:
- $X(h) \rightarrow Y_{1}(h) Y_{2}(w)$ for $X \in N$, and $Y_{1}, Y_{2} \in N$, and $h, w \in \Sigma$
- $X(h) \rightarrow Y_{1}(w) Y_{2}(h)$ for $X \in N$, and $Y_{1}, Y_{2} \in N$, and $h, w \in \Sigma$
- $X(h) \rightarrow h$ for $X \in N$, and $h \in \Sigma$
- $S \in N$ is a distinguished start symbol

A New Form of Grammar

- The new form of grammar looks just like a Chomsky normal form CFG, but with potentially $O\left(|\Sigma|^{2} \times|N|^{3}\right)$ possible rules.
- Naively, parsing an n word sentence using the dynamic programming algorithm will take $O\left(n^{3}|\Sigma|^{2}|N|^{3}\right)$ time. But $|\Sigma|$ can be huge!!
- Crucial observation: at most $O\left(n^{2} \times|N|^{3}\right)$ rules can be applicable to a given sentence $w_{1}, w_{2}, \ldots w_{n}$ of length n. This is because any rules which contain a lexical item that is not one of $w_{1} \ldots w_{n}$, can be safely discarded.
- The result: we can parse in $O\left(n^{5}|N|^{3}\right)$ time.

Adding Headtags to Trees

- Also propagate part-of-speech tags up the trees (We'll see soon why this is useful!)

Heads and Semantics

Syntactic structure \Rightarrow
Semantics/Logical form/Predicate-argument structure

Adding Predicate Argument Structure to our Grammar

- Identify words with lambda terms:

- Semantics for an entire constituent is formed by applying semantics of head (predicate) to the other children (arguments)

Adding Predicate-Argument Structure to our Grammar

Note that like is the predicate for both the VP and the S, and provides the head for both rules

Headwords and Dependencies

- A new representation: a tree is represented as a set of dependencies, not a set of context-free rules

Headwords and Dependencies

- A dependency is an 8-tuple:
(headword, modifer-word, parent non-terminal, modifier non-terminal,
headtag, modifer-tag, head non-terminal, direction)
- Each rule with n children contributes $(n-1)$ dependencies.
$\mathrm{VP}(q u e s t i o n e d, \mathrm{Vt}) \quad \Rightarrow \quad \mathrm{Vt}(q u e s t i o n e d, \mathrm{Vt}) \quad \mathrm{NP}($ lawyer,NN $)$
\Downarrow
(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)

Headwords and Dependencies

$$
\Downarrow
$$

(told, V[6], Clinton, NNP, VP, V[6], NP, RIGHT)
(told, V[6], that, COMP, VP, V[6], SBAR, RIGHT)

Headwords and Dependencies

(told, V[6], yesterday, NN, S, VP, NP, LEFT)
(told, V[6], Hillary, NNP, S, VP, NP, LEFT)

A Special Case: the Top of the Tree

(--	--	told	V[6]	TOP	S	-	SPECIAL)
(told	V[6]	Hillary	NNP	S	VP	NP	LEFT)
(told	V[6]	Clinton	NNP	VP	V[6]	NP	RIGHT)
(told	V[6]	that	COMP	VP	V[6]	SBAR	RIGHT)
(that	COMP	was	Vt	SBAR	COMP	S	RIGHT)
(was	Vt	she	PRP	S	VP	NP	LEFT)
(was	Vt	president	NP	VP	Vt	NP	RIGHT)

A Model from Charniak (1997)

S(questioned,Vt)
$\Downarrow \quad P(\mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt $))$

S(questioned, Vt)

$\Downarrow \quad P($ lawyer $\mid \mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}$, questioned, Vt$)$)

Smoothed Estimation

$P(\mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt$))=$

$$
\begin{aligned}
& \lambda_{1} \times \frac{\operatorname{Count}(\mathrm{S}(\text { questioned, } \mathrm{Vt}) \rightarrow \mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP})}{\operatorname{Count}(\mathrm{S}(\text { questioned, Vt }))} \\
+ & \lambda_{2} \times \frac{\operatorname{Count}\left(\mathrm{S}\left({ }_{--}, \mathrm{Vt}\right) \rightarrow \mathrm{NP}\left({ }_{--}, \mathrm{NN}\right) \mathrm{VP}\right)}{\operatorname{Count}\left(\mathrm{S}\left({ }_{--}, \mathrm{Vt}\right)\right)}
\end{aligned}
$$

- Where $0 \leq \lambda_{1}, \lambda_{2} \leq 1$, and $\lambda_{1}+\lambda_{2}=1$

Smoothed Estimation

$P($ lawyer $\mid \mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}, q u e s t i o n e d, \mathrm{Vt})=$

$$
\begin{aligned}
& \lambda_{1} \times \frac{\operatorname{Count}(\text { lawyer } \mid \text { S,VP,NP,NN,questioned,Vt })}{\operatorname{Count}(\mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}, \text { questioned,Vt })} \\
+ & \lambda_{2} \times \frac{\operatorname{Count}(\text { lawyer } \mid \mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}, \mathrm{Vt})}{\operatorname{Count}(\mathrm{S}, \mathrm{VP}, \mathrm{NP}, \mathrm{NN}, \mathrm{Vt})} \\
+ & \lambda_{3} \times \frac{\operatorname{Count}(\text { lawyer } \mid \mathrm{NN})}{\operatorname{Count}(\mathrm{NN})}
\end{aligned}
$$

- Where $0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1$, and $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$
$P($ NP $($ lawyer, NN$) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt$))=$

$$
\begin{aligned}
& \left(\lambda_{1} \times \frac{\operatorname{Count}(\mathbf{S}(\text { questioned,Vt }) \rightarrow \mathbf{N P}(\ldots, \mathrm{NN}) \mathrm{VP})}{\operatorname{Count}(\mathbf{S}(\text { questioned,Vt }))}\right. \\
& \left.+\lambda_{2} \times \frac{\operatorname{Count}(\mathbf{S}(\ldots, \mathrm{Vt}) \rightarrow \mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP})}{\operatorname{Count}(\mathbf{S}(\ldots, \mathrm{Vt}))}\right) \\
& \times\left(\lambda_{1} \times \frac{\operatorname{Count}(\text { lawyer | S,VP,NP,NN,questioned,Vt })}{\operatorname{Count}(\text { S,VP,NP,NN,questioned,Vt })}\right. \\
& +\lambda_{2} \times \frac{\operatorname{Count}(\text { lawyer } \mid \text { S,VP,NP,NN,Vt })}{\operatorname{Count}(\text { S,VP,NP,NN,Vt })} \\
& \left.+\lambda_{3} \times \frac{\operatorname{Count}(\text { lawyer } \mid \text { NN })}{\operatorname{Count}(\mathbf{N N})}\right)
\end{aligned}
$$

Motivation for Breaking Down Rules

- First step of decomposition of (Charniak 1997):

S(questioned, Vt)
$\Downarrow \quad P(\mathrm{NP}(\ldots, \mathrm{NN}) \mathrm{VP} \mid \mathrm{S}($ questioned, Vt$))$
S(questioned, Vt)
$\mathrm{NP}\left({ }_{\text {_-, NN }}\right) \quad \mathrm{VP}($ questioned, Vt$)$

- Relies on counts of entire rules
- These counts are sparse:
- 40,000 sentences from Penn treebank have 12,409 rules.
- 15% of all test data sentences contain a rule never seen in training

Motivation for Breaking Down Rules

Rule Count	No. of Rules by Type	Percentage by Type	No. of Rules by token	Percentage by token
1	6765	54.52	6765	0.72
2	1688	13.60	3376	0.36
3	695	5.60	2085	0.22
4	457	3.68	1828	0.19
5	329	2.65	1645	0.18
$6 \ldots 10$	835	6.73	6430	0.68
$11 \ldots 20$	496	4.00	7219	0.77
$21 \ldots 50$	501	4.04	15931	1.70
$51 \ldots 100$	204	1.64	14507	1.54
>100	439	3.54	879596	93.64

Statistics for rules taken from sections 2-21 of the treebank (Table taken from my PhD thesis).

Modeling Rule Productions as Markov Processes

- Step 1: generate category of head child

$$
\begin{gathered}
\text { S(told,V[6]) } \\
\Downarrow \\
\text { S(told,V[6]) } \\
\text { VP(told,V[6]) }
\end{gathered}
$$

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $)$

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}[6], \mathrm{LEFT}) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V[6],LEFT $)$

Modeling Rule Productions as Markov Processes

- Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

- Step 3: generate right modifiers in a Markov chain

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT $) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told,V[6],LEFT $) \times P_{d}(\mathrm{STOP} \mid \mathrm{S}, \mathrm{VP}$, told,V[6],LEFT $) \times$ P_{d} (STOP | S,VP,told,V[6],RIGHT)

A Refinement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head.

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $) \times$
$P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=1)$

A Refinement: Adding a Distance Variable

- $\Delta=1$ if position is adjacent to the head.

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{d}(\mathrm{NP}($ Hillary,NNP $) \mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}[6], \mathrm{LEFT}) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=0)$

The Final Probabilities

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times$
$P_{d}($ NP(Hillary,NNP) $\mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=1) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=0) \times$
$P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\Delta=0) \times$
$P_{d}($ STOP $\mid \mathrm{S}, \mathrm{VP}$, told, V[6],RIGHT, $\Delta=1)$

Adding the Complement/Adjunct Distinction

- Hillary is the subject
- yesterday is a temporal modifier
- But nothing to distinguish them.

Adding the Complement/Adjunct Distinction

- Bill is the object
- yesterday is a temporal modifier
- But nothing to distinguish them.

Complements vs. Adjuncts

- Complements are closely related to the head they modify, adjuncts are more indirectly related
- Complements are usually arguments of the thing they modify yesterday Hillary told $\ldots \Rightarrow$ Hillary is doing the telling
- Adjuncts add modifying information: time, place, manner etc. yesterday Hillary told $\ldots \Rightarrow$ yesterday is a temporal modifier
- Complements are usually required, adjuncts are optional
yesterday Hillary told . . . (grammatical)
vs. Hillary told . . . (grammatical)
vs. yesterday told ... (ungrammatical)

Adding Tags Making the Complement/Adjunct Distinction

Adding Tags Making the Complement/Adjunct Distinction

Adding Subcategorization Probabilities

- Step 1: generate category of head child

$$
\begin{gathered}
\text { S(told,V[6]) } \\
\Downarrow \\
\text { S(told,V[6]) } \\
\text { VP(told,V[6]) }
\end{gathered}
$$

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, V[6] $)$

Adding Subcategorization Probabilities

- Step 2: choose left subcategorization frame

$$
\begin{gathered}
\text { S(told,V[6]) } \\
\mathrm{VP}(\text { told, V[6]) } \\
\Downarrow \\
\mathrm{S}(\text { told,V[6] }) \\
\mathrm{VP}(\text { told, } \mathrm{V}[6]) \\
\{\mathrm{NP}-\mathrm{C}\} \\
\\
P_{h}(\mathrm{VP} \mid \mathrm{S}, \text { told, } \mathrm{V}[6]) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}, \text { told, } \mathrm{V}[6])
\end{gathered}
$$

- Step 3: generate left modifiers in a Markov chain

$$
\begin{aligned}
& \text { S(told, V[6]) } \\
& \text { \{NP-C\} } \\
& \Downarrow
\end{aligned}
$$

\{\}
$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}[6]) \times$ $P_{d}($ NP-C(Hillary,NNP) $\mid \mathrm{S}, \mathrm{VP}$, told, $\mathrm{V}[6]$, LEFT, $\{\mathrm{NP}-\mathrm{C}\})$

$P_{h}(\mathrm{VP} \mid \mathrm{S}$, told, $\mathrm{V}[6]) \times P_{l c}(\{\mathrm{NP}-\mathrm{C}\} \mid \mathrm{S}, \mathrm{VP}$, told, V[6] $)$
$P_{d}($ NP-C(Hillary,NNP) \mid S,VP,told,V[6],LEFT, $\{$ NP-C $\}) \times$
$P_{d}(\mathrm{NP}($ yesterday,NN $) \mid \mathrm{S}, \mathrm{VP}$, told, V[6],LEFT, $\{ \})$


```
P
P
P
P
```


The Final Probabilities


```
Ph(VP | S, told, V[6])\times
P
P
P
P
Prc}({}| S, VP, told, V[6])
P
```


Another Example

Summary

- Identify heads of rules \Rightarrow dependency representations
- Presented two variants of PCFG methods applied to lexicalized grammars.
- Break generation of rule down into small (markov process) steps
- Build dependencies back up (distance, subcategorization)

Evaluation: Representing Trees as Constituents

Label Start Point End Point

NP	1	2
NP	4	5
VP	3	5
S	1	5

Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
		2
NP	1	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	

- $G=$ number of constituents in gold standard $=7$
- $P=$ number in parse output $=6$
- $C=$ number correct $=6$

$$
\text { Recall }=100 \% \times \frac{C}{G}=100 \% \times \frac{6}{7} \quad \text { Precision }=100 \% \times \frac{C}{P}=100 \% \times \frac{6}{6}
$$

Results

Method	Recall	Precision
PCFGs (Charniak 97)	70.6%	74.8%
Conditional Models - Decision Trees (Magerman 95)	84.0%	84.3%
Lexical Dependencies (Collins 96)	85.3%	85.7%
Conditional Models - Logistic (Ratnaparkhi 97)	86.3%	87.5%
Generative Lexicalized Model (Charniak 97)	86.7%	86.6%
Model 1 (no subcategorization)	87.5%	87.7%
Model 2 (subcategorization)	88.1%	88.3%

Effect of the Different Features

MODEL	A	V	R	P
Model 1	NO	NO	75.0%	76.5%
Model 1	YES	NO	86.6%	86.7%
Model 1	YES	YES	87.8%	88.2%
Model 2	NO	NO	85.1%	86.8%
Model 2	YES	NO	87.7%	87.8%
Model 2	YES	YES	88.7%	89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization, Model 2 has subcategorization. $\mathrm{A}=\mathrm{YES}, \mathrm{V}=\mathrm{YES}$ mean that the adjacency/verb conditions respectively were used in the distance measure. $\mathbf{R} / \mathbf{P}=$ recall/precision.

Weaknesses of Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
		2
NP	1	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	

NP attachment:
(S (NP The men) (VP dumped (NP (NP sacks) (PP of (NP the substance)))))
VP attachment:
(S (NP The men) (VP dumped (NP sacks) (PP of (NP the substance))))

Dependency Accuracies

- All parses for a sentence with n words have n dependencies Report a single figure, dependency accuracy
- Model 2 with all features scores 88.3% dependency accuracy (91% if you ignore non-terminal labels on dependencies)
- Can calculate precision/recall on particular dependency types e.g., look at all subject/verb dependencies \Rightarrow all dependencies with label (S,VP,NP-C,LEFT)

Recall $=\frac{\text { number of subject/verb dependencies correct }}{\text { number of subject/verb dependencies in gold standard }}$
Precision $=\frac{\text { number of subject } / \text { verb dependencies correct }}{\text { number of subject/verb dependencies in parser's output }}$

R	CP	P	Count	Relation	Rec	Prec
1	29.65	29.65	11786	NPB TAG TAG L	94.60	93.46
2	40.55	10.90	4335	PP TAG NP-C R	94.72	94.04
3	48.72	8.17	3248	S VP NP - L L	95.75	95.11
4	54.03	5.31	2112	NP NPB PP R	84.99	84.35
5	59.30	5.27	2095	VP TAG NP-C R	92.41	92.15
6	64.18	4.88	1941	VP TAG VP-C R	97.42	97.98
7	68.71	4.53	1801	VP TAG PP R	83.62	81.14
8	73.13	4.42	1757	TOP TOP S R	96.36	96.85
9	74.53	1.40	558	VP TAG SBAR-C R	94.27	93.93
10	75.83	1.30	518	QP TAG TAG R	86.49	86.65
11	77.08	1.25	495	NP NPB NP R	74.34	75.72
12	78.28	1.20	477	SBAR TAG S-C R	94.55	92.04
13	79.48	1.20	476	NP NPB SBAR R	79.20	79.54
14	80.40	0.92	367	VP TAG ADVP R	74.93	78.57
15	81.30	0.90	358	NPB TAG NPB L	97.49	92.82
16	82.18	0.88	349	VP TAG TAG R	90.54	93.49
17	82.97	0.79	316	VP TAG SG-C R	92.41	88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank, as recovered by model $2 . \mathrm{R}=$ rank; $\mathrm{CP}=$ cumulative percentage; $\mathrm{P}=$ percentage; Rec $=$ Recall; Prec $=$ precision .

Type	Sub-type	Description	Count	Recall	Precision
Complement to a verb $6495=16.3 \% \text { of all cases }$	```S VP NP-C L VP TAG NP-C R VP TAG SBAR-C R VP TAG SG-C R VP TAG \(S-C\) R \(S\) VP S-C L S VP SG-C L ...```	Subject Object	3248 2095 558 316 150 104 14	95.75 92.41 94.27 92.41 74.67 93.27 78.57	95.11 92.15 93.93 88.22 78.32 78.86 68.75
	TOTAL		6495	93.76	92.96
Other complements $7473=18.8 \%$ of all cases	PP TAG NP-C R VP TAG VP-C R SBAR TAG $S-C$ R SBAR WHNP SG-C R PP TAG SG-C R SBAR WHADVP S-C R PP TAG PP-C R SBAR WHNP S-C R SBAR TAG SG-C R PP TAG S-C R SBAR WHPP S-C R S ADJP NP-C L PP TAG SBAR-C R ...		4335 1941 477 286 125 83 51 42 23 18 16 15 15	$\begin{gathered} \hline \hline 94.72 \\ 97.42 \\ 94.55 \\ 90.56 \\ 94.40 \\ 97.59 \\ 84.31 \\ 66.67 \\ 69.57 \\ 38.89 \\ 100.00 \\ 46.67 \\ 100.00 \end{gathered}$	94.04 97.98 92.04 90.56 89.39 98.78 70.49 84.85 69.57 63.64 100.00 46.67 88.24
	TOTAL		7473	94.47	94.12

Type	Sub-type	Description	Count	Recall	Precision
Mod'n within BaseNPs $12742=29.6 \%$ of all cases	NPB TAG TAG L		11786	94.60	93.46
	NPB TAG NPB L		358	97.49	92.82
	NPB TAG TAG R		189	74.07	75.68
	NPB TAG ADJP L		167	65.27	71.24
	NPB TAG QP L		110	80.91	81.65
	NPB TAG NAC L		29	51.72	71.43
	NPB NX TAG L		27	14.81	66.67
	NPB QP TAG L		15	66.67	76.92
	...				
	TOTAL		12742	93.20	92.59
Mod'n to NPs$1418=3.6 \% \text { of all cases }$	NP NPB NP R NP NPB SBAR R NP NPB VP R NP NPB SG R NP NPB PRN R NP NPB ADVP R NP NPB ADJP R \ldots	Appositive	495	74.34	75.72
		Relative clause	476	79.20	79.54
		Reduced relative	205	77.56	72.60
			63	88.89	81.16
			53	45.28	60.00
			48	35.42	54.84
			48	62.50	69.77
	TOTAL		1418	73.20	75.49

Type	Sub-type	Description	Count	Recall	Precision
Sentential head	TOP TOP S R		1757	96.36	96.85
	TOP TOP SINV R		89	96.63	94.51
$1917=4.8 \%$ of all cases	TOP TOP NP R		32	78.12	60.98
	TOP TOP SG R		15	40.00	33.33
	...				
	TOTAL		1917	94.99	94.99
Adjunct to a verb $2242=5.6 \%$ of all cases	VP TAG ADVP R		367	74.93	78.57
	VP TAG TAG R		349	90.54	93.49
	VP TAG ADJP R		259	83.78	80.37
	S VP ADVP L		255	90.98	84.67
	VP TAG NP R		187	66.31	74.70
	VP TAG SBAR R		180	74.44	72.43
	VP TAG SG R		159	60.38	68.57
	S VP TAG L		115	86.96	90.91
	S VP SBAR L		81	88.89	85.71
	VP TAG ADVP L		79	51.90	49.40
	S VP PRN L		58	25.86	48.39
	S VP NP L		45	66.67	63.83
	S VP SG L		28	75.00	52.50
	VP TAG PRN R		27	3.70	12.50
	VP TAG S R		11	9.09	100.00
	TOTAL		2242	75.11	78.44

Some Conclusions about Errors in Parsing

- "Core" sentential structure (complements, NP chunks) recovered with over 90% accuracy.
- Attachment ambiguities involving adjuncts are resolved with much lower accuracy ($\approx 80 \%$ for PP attachment, $\approx 50-60 \%$ for coordination).

