6.891: Lecture 4 (September 20, 2005) Parsing and Syntax II

Overview

• Weaknesses of PCFGs

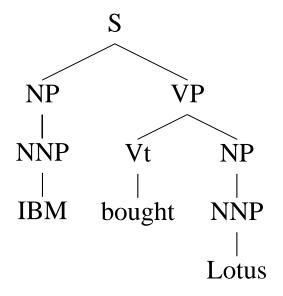
• Heads in context-free rules

• Dependency representations of parse trees

• Two models making use of dependencies

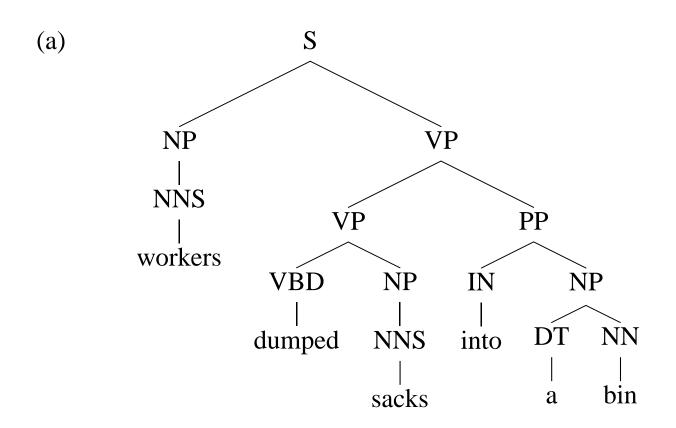
Weaknesses of PCFGs

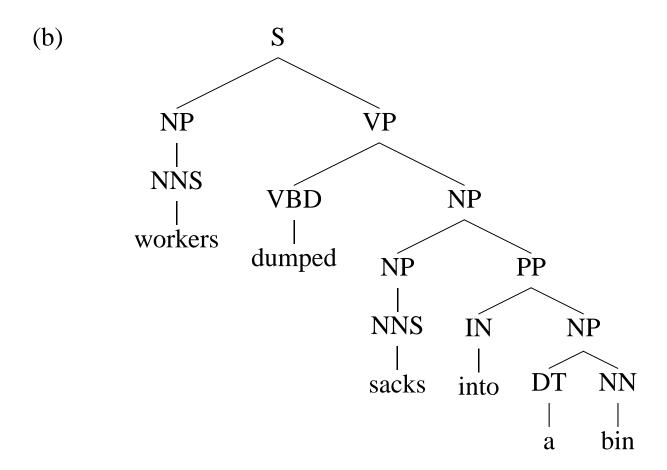
- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies



$$\begin{array}{lll} \mathsf{PROB} = & P(\mathsf{S} \to \mathsf{NP} \ \mathsf{VP} \ | \ \mathsf{S}) & \times P(\mathsf{NNP} \to IBM \ | \ \mathsf{NNP}) \\ & \times P(\mathsf{VP} \to \mathsf{V} \ \mathsf{NP} \ | \ \mathsf{VP}) & \times P(\mathsf{Vt} \to bought \ | \ \mathsf{Vt}) \\ & \times P(\mathsf{NP} \to \mathsf{NNP} \ | \ \mathsf{NP}) & \times P(\mathsf{NNP} \to Lotus \ | \ \mathsf{NNP}) \\ & \times P(\mathsf{NP} \to \mathsf{NNP} \ | \ \mathsf{NP}) & \end{array}$$

Another Case of PP Attachment Ambiguity



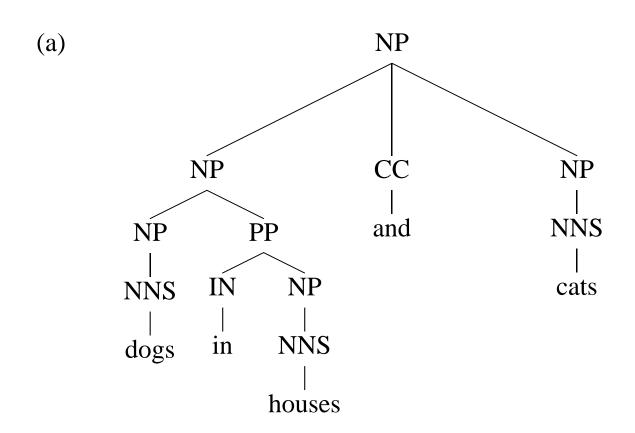


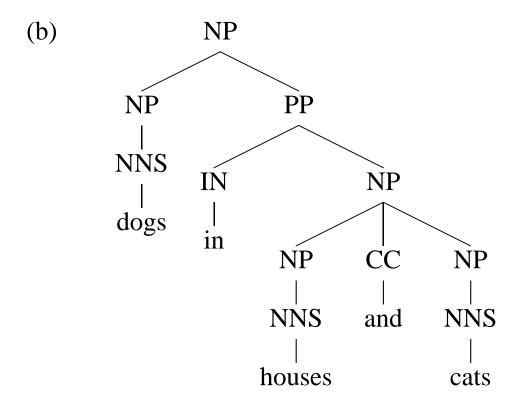
	Rules		Rules
(a)	$S \rightarrow NP VP$	(b)	$S \rightarrow NP VP$
	$NP \to NNS$		$NP \rightarrow NNS$
	$\mathbf{VP} \rightarrow \mathbf{VP} \ \mathbf{PP}$		$NP \rightarrow NP PP$
	$VP \rightarrow VBD NP$		$VP \rightarrow VBD NP$
	$NP \to NNS$		$NP \rightarrow NNS$
	$PP \to IN \ NP$		$PP \rightarrow IN NP$
	$NP \to DT \; NN$		$NP \rightarrow DT NN$
	$NNS \rightarrow workers$		$NNS \rightarrow workers$
	$VBD \rightarrow dumped$		$VBD \rightarrow dumped$
	$NNS \rightarrow sacks$		$NNS \rightarrow sacks$
	$IN \rightarrow into$		$IN \rightarrow into$
	$DT \rightarrow a$		$DT \rightarrow a$
	$NN \rightarrow bin$		$NN \rightarrow bin$

If $P(NP \rightarrow NP PP \mid NP) > P(VP \rightarrow VP PP \mid VP)$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity



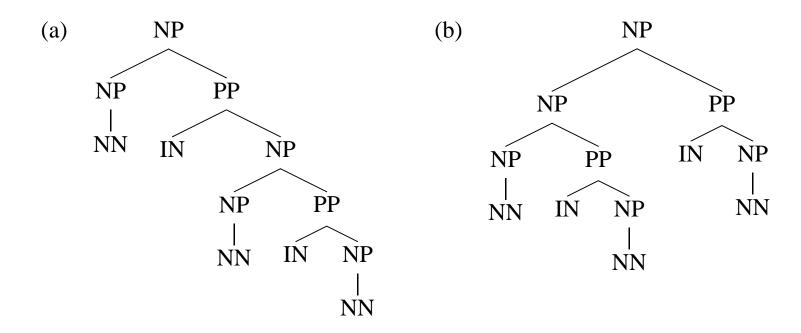


	Rules
	$NP \rightarrow NP CC NP$
	$NP \rightarrow NP PP$
	$NP \rightarrow NNS$
	$PP \rightarrow IN NP$
(a)	$NP \rightarrow NNS$
(a)	$NP \rightarrow NNS$
	$NNS \rightarrow dogs$
	$IN \rightarrow in$
	$NNS \rightarrow houses$
	$CC \rightarrow and$
	$NNS \rightarrow cats$

Rules
$NP \rightarrow NP CC NP$
$NP \rightarrow NP PP$
$NP \to NNS$
$PP \rightarrow IN NP$
$NP \to NNS$
$NP \to NNS$
$NNS \rightarrow dogs$
$IN \rightarrow in$
$NNS \rightarrow houses$
$CC \rightarrow and$
$NNS \rightarrow cats$

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment



- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.

Structural Preferences: Close Attachment

Previous example: John was believed to have been shot by Bill

Here the low attachment analysis (Bill does the *shooting*) contains same rules as the high attachment analysis (Bill does the *believing*), so the two analyses receive same probability.

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

More about Heads

• Each context-free rule has one "special" child that is the head of the rule. e.g.,

```
S \Rightarrow NP \quad VP (VP is the head)

VP \Rightarrow Vt \quad NP (Vt is the head)

NP \Rightarrow DT \quad NN \quad NN (NN is the head)
```

- A core idea in linguistics
 (X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
 - The central sub-constituent of each rule.
 - The semantic predicate in each rule.

Rules which Recover Heads: An Example of rules for NPs

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

```
e.g.,
                    NNP
 NP
        \Rightarrow DT
                             NN
 NP
        \Rightarrow DT
                    NN
                             NNP
 NP
        \Rightarrow NP
                   PP
 NP
        \Rightarrow DT
                    JJ
 NP \Rightarrow DT
```

Rules which Recover Heads: An Example of rules for VPs

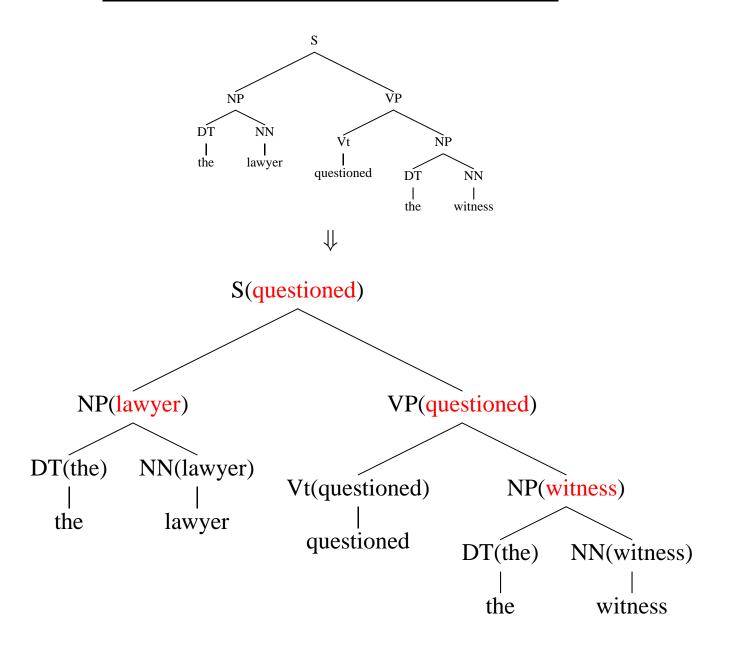
If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an VP: Choose the leftmost VP

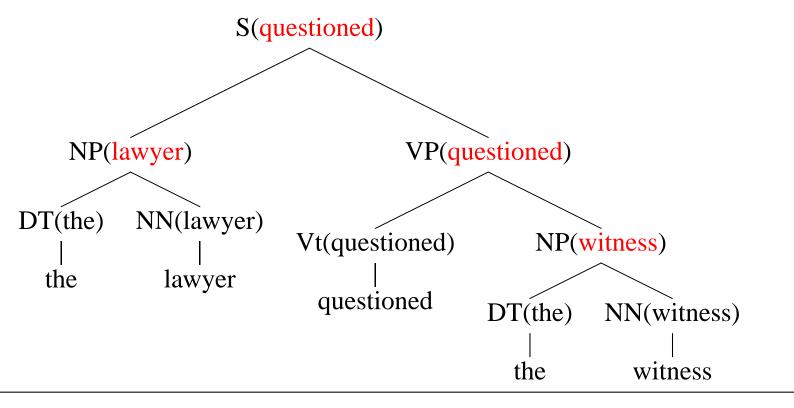
Else Choose the leftmost child

e.g.,
$$VP \Rightarrow Vt NP$$
 $VP \Rightarrow VP PP$

Adding Headwords to Trees



Adding Headwords to Trees



• A constituent receives its headword from its head child.

 $S \Rightarrow NP \quad VP$ (S receives headword from VP) $VP \Rightarrow Vt \quad NP$ (VP receives headword from Vt) $NP \Rightarrow DT \quad NN$ (NP receives headword from NN)

Chomsky Normal Form

A context free grammar $G = (N, \Sigma, R, S)$ in Chomsky Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $-X \rightarrow Y_1Y_2$ for $X \in \mathbb{N}$, and $Y_1, Y_2 \in \mathbb{N}$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this form, in $O(n^3|R|)$ time where n is the length of the string being parsed, and |R| is the number of rules in the grammar (see the dynamic programming algorithm in the previous notes)

A New Form of Grammar

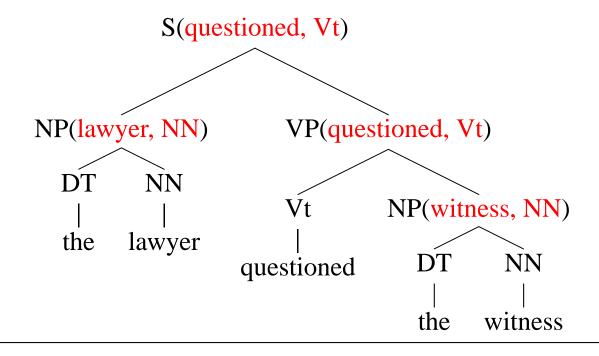
We define the following type of "lexicalized" grammar:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of three forms:
 - $-X(h) \rightarrow Y_1(h) \ Y_2(w) \ \text{for} \ X \in N, \ \text{and} \ Y_1, Y_2 \in N, \ \text{and} \ h, w \in \Sigma$
 - $X(h) \rightarrow Y_1(w) \ Y_2(h)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $-X(h) \rightarrow h \text{ for } X \in N, \text{ and } h \in \Sigma$
- $S \in N$ is a distinguished start symbol

A New Form of Grammar

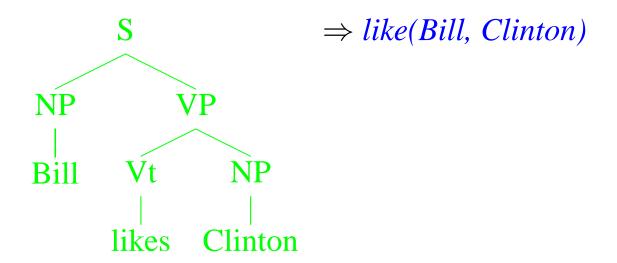
- The new form of grammar looks just like a Chomsky normal form CFG, but with potentially $O(|\Sigma|^2 \times |N|^3)$ possible rules.
- Naively, parsing an n word sentence using the dynamic programming algorithm will take $O(n^3|\Sigma|^2|N|^3)$ time. But $|\Sigma|$ can be huge!!
- Crucial observation: at most $O(n^2 \times |N|^3)$ rules can be applicable to a given sentence $w_1, w_2, \dots w_n$ of length n. This is because any rules which contain a lexical item that is not one of $w_1 \dots w_n$, can be safely discarded.
- The result: we can parse in $O(n^5|N|^3)$ time.

Adding Headtags to Trees



• Also propagate **part-of-speech tags** up the trees (We'll see soon why this is useful!)

Heads and Semantics



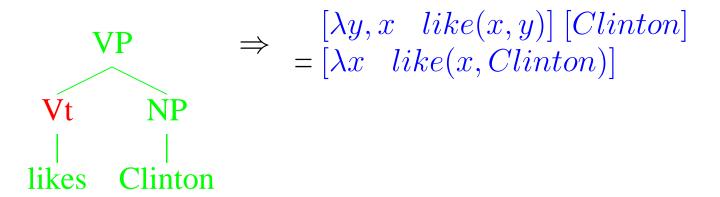
Syntactic structure \Rightarrow Semantics/Logical form/Predicate-argument structure

Adding Predicate Argument Structure to our Grammar

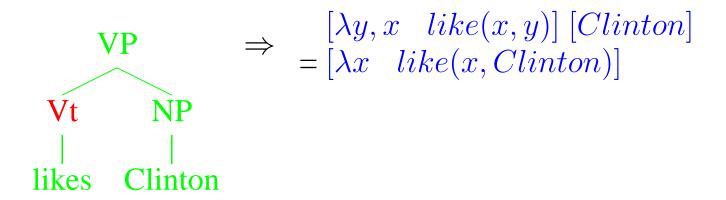
• Identify words with lambda terms:

$$\begin{array}{ll} \textbf{likes} & \lambda y, x \quad like(x,y) \\ \textbf{Bill} & Bill \\ \textbf{Clinton} & Clinton \end{array}$$

• Semantics for an entire constituent is formed by applying semantics of head (predicate) to the other children (arguments)



Adding Predicate-Argument Structure to our Grammar



$$S \Rightarrow \begin{bmatrix} \lambda x & like(x, Clinton) \end{bmatrix} \begin{bmatrix} Bill \end{bmatrix}$$

$$NP VP$$

Note that like is the predicate for both the VP and the S, and provides the head for both rules

• A new representation: a tree is represented as a set of *dependencies*, not a set of *context-free rules*

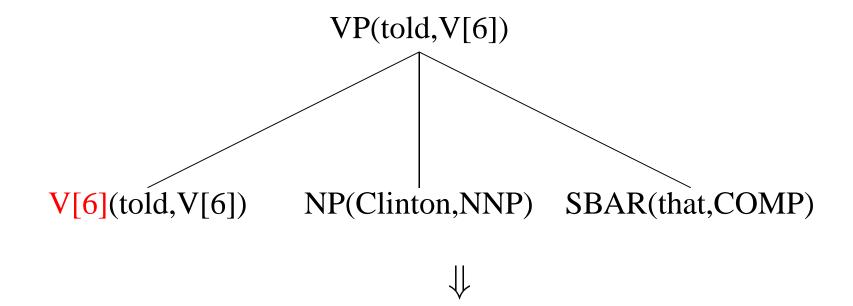
• A **dependency** is an 8-tuple:

```
    (headword, headtag, modifer-word, modifer-tag, parent non-terminal, head non-terminal, modifier non-terminal, direction)
```

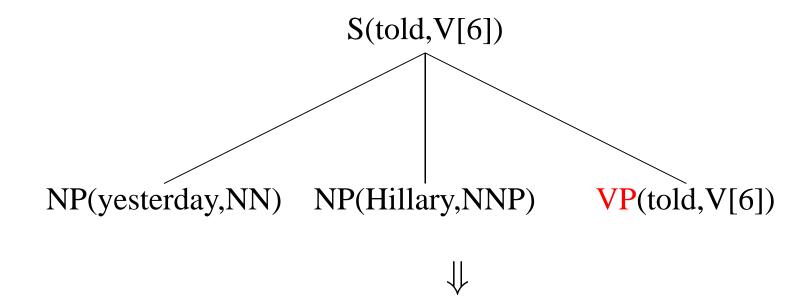
• Each rule with n children contributes (n-1) dependencies.

```
VP(questioned, Vt) \Rightarrow Vt(questioned, Vt) NP(lawyer, NN)
\downarrow \downarrow
```

(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)



(told, V[6], Clinton, NNP, VP, V[6], NP, RIGHT) (told, V[6], that, COMP, VP, V[6], SBAR, RIGHT)



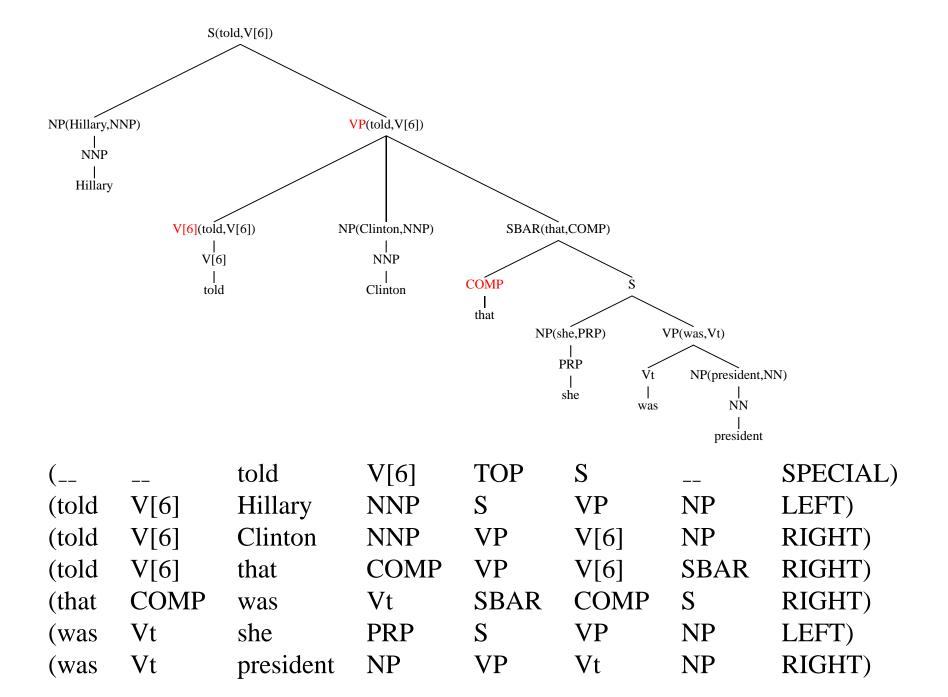
(told, V[6], yesterday, NN, S, VP, NP, LEFT) (told, V[6], Hillary, NNP, S, VP, NP, LEFT)

A Special Case: the Top of the Tree

TOP

|
S(told,V[6])

(__, __, told, V[6], TOP, S, __, SPECIAL)



A Model from Charniak (1997)

S(questioned,Vt)

 $P(NP(_,NN) VP \mid S(questioned,Vt))$ S(questioned,Vt) NP(__,NN) VP(questioned,Vt) P(lawyer | S,VP,NP,NN, questioned,Vt)) S(questioned, Vt) NP(lawyer,NN) VP(questioned,Vt)

Smoothed Estimation

 $P(NP(_,NN) VP \mid S(questioned,Vt)) =$

$$\lambda_1 \times \frac{Count(S(questioned,Vt) \rightarrow NP(__,NN) \ VP)}{Count(S(questioned,Vt))}$$

$$+\lambda_2 \times \frac{Count(\mathbf{S}(_,\mathbf{Vt})\rightarrow\mathbf{NP}(_,\mathbf{NN})\ \mathbf{VP})}{Count(\mathbf{S}(_,\mathbf{Vt}))}$$

• Where $0 \le \lambda_1, \lambda_2 \le 1$, and $\lambda_1 + \lambda_2 = 1$

Smoothed Estimation

 $P(\text{lawyer} \mid S, \text{VP,NP,NN,questioned,Vt}) =$

$$\lambda_1 \times \frac{\mathit{Count}(lawyer \mid S, VP, NP, NN, questioned, Vt)}{\mathit{Count}(S, VP, NP, NN, questioned, Vt)}$$

$$+\lambda_2 \times \frac{\mathit{Count}(lawyer \mid S, VP, NP, NN, Vt)}{\mathit{Count}(S, VP, NP, NN, Vt)}$$

$$+\lambda_3 \times \frac{Count(lawyer | NN)}{Count(NN)}$$

• Where $0 \le \lambda_1, \lambda_2, \lambda_3 \le 1$, and $\lambda_1 + \lambda_2 + \lambda_3 = 1$

$$P(NP(lawyer,NN) VP \mid S(questioned,Vt)) =$$

$$(\lambda_1 \times \frac{Count(S(questioned,Vt) \rightarrow NP(__,NN) \ VP)}{Count(S(questioned,Vt))}$$

$$+\lambda_2 \times \frac{Count(S(_,Vt)\rightarrow NP(_,NN)\ VP)}{Count(S(_,Vt))}$$

$$\times$$
 ($\lambda_1 \times \frac{Count(lawyer \mid S, VP, NP, NN, questioned, Vt)}{Count(S, VP, NP, NN, questioned, Vt)}$

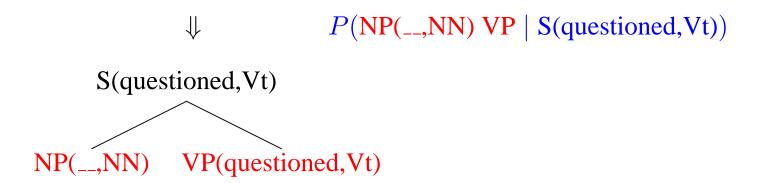
$$+\lambda_2 \times \frac{Count(lawyer \mid S, VP, NP, NN, Vt)}{Count(S, VP, NP, NN, Vt)}$$

$$+\lambda_3 \times \frac{Count(lawyer \mid NN)}{Count(NN)}$$
)

Motivation for Breaking Down Rules

• First step of decomposition of (Charniak 1997):

S(questioned,Vt)



- Relies on counts of entire rules
- These counts are *sparse*:
 - 40,000 sentences from Penn treebank have 12,409 rules.
 - 15% of all test data sentences contain a rule never seen in training

Motivation for Breaking Down Rules

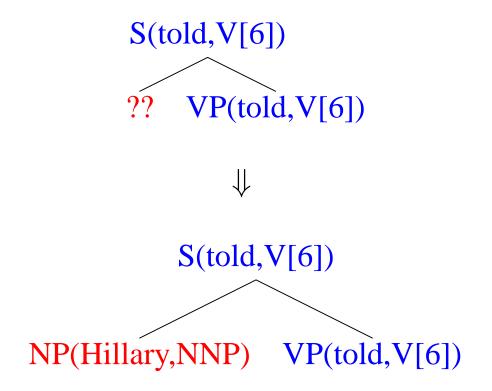
Rule Count	No. of Rules	Percentage	No. of Rules	Percentage
	by Type	by Type	by token	by token
1	6765	54.52	6765	0.72
2	1688	13.60	3376	0.36
3	695	5.60	2085	0.22
4	457	3.68	1828	0.19
5	329	2.65	1645	0.18
6 10	835	6.73	6430	0.68
11 20	496	4.00	7219	0.77
21 50	501	4.04	15931	1.70
51 100	204	1.64	14507	1.54
> 100	439	3.54	879596	93.64

Statistics for rules taken from sections 2-21 of the treebank (Table taken from my PhD thesis).

• Step 1: generate category of head child

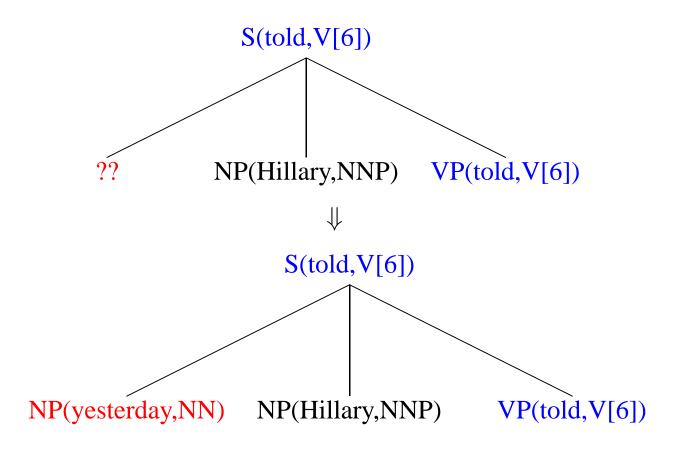
 $P_h(\mathbf{VP} \mid \mathbf{S}, \text{told}, \mathbf{V[6]})$

• Step 2: generate left modifiers in a Markov chain



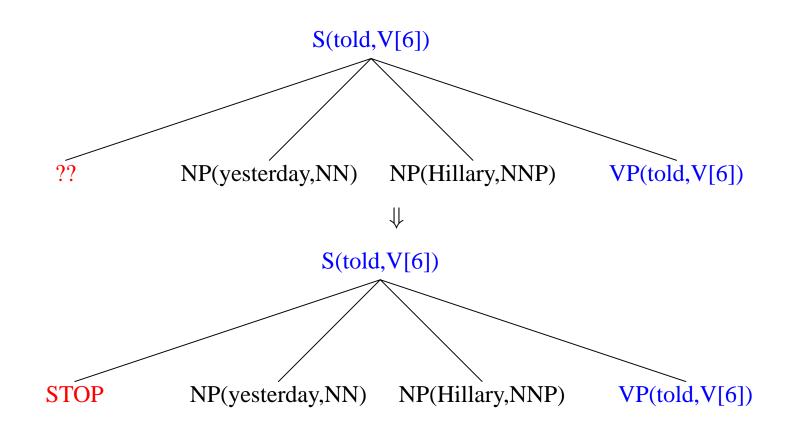
 $P_h(VP \mid S, told, V[6]) \times P_d(NP(Hillary, NNP) \mid S, VP, told, V[6], LEFT)$

• Step 2: generate left modifiers in a Markov chain



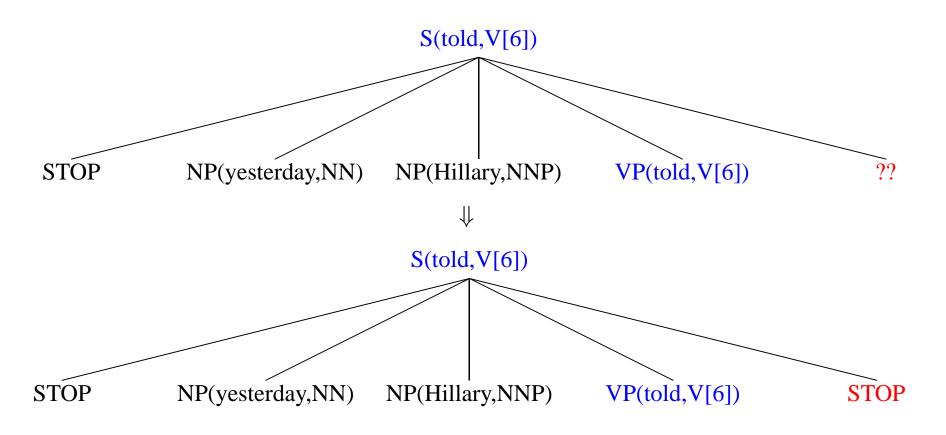
 $P_h(VP \mid S, told, V[6]) \times P_d(NP(Hillary,NNP) \mid S,VP,told,V[6],LEFT) \times P_d(NP(yesterday,NN) \mid S,VP,told,V[6],LEFT)$

• Step 2: generate left modifiers in a Markov chain



 $P_h(VP \mid S, told, V[6]) \times P_d(NP(Hillary,NNP) \mid S,VP,told,V[6],LEFT) \times P_d(NP(yesterday,NN) \mid S,VP,told,V[6],LEFT) \times P_d(STOP \mid S,VP,told,V[6],LEFT)$

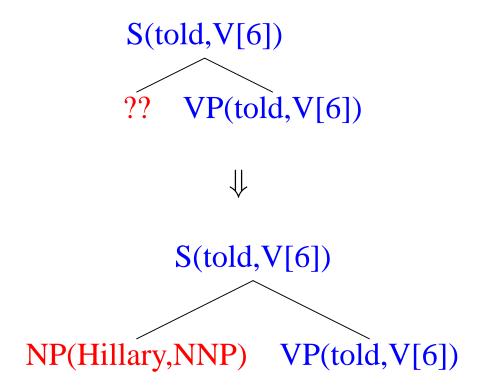
• Step 3: generate right modifiers in a Markov chain



 $P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_d(\text{NP(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT}) \times P_d(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT}) \times P_d(\text{STOP} \mid \text{S,VP,told,V[6],RIGHT}) \times P_d(\text{STOP} \mid \text{S,VP,told,V[6],RIGHT})$

A Refinement: Adding a Distance Variable

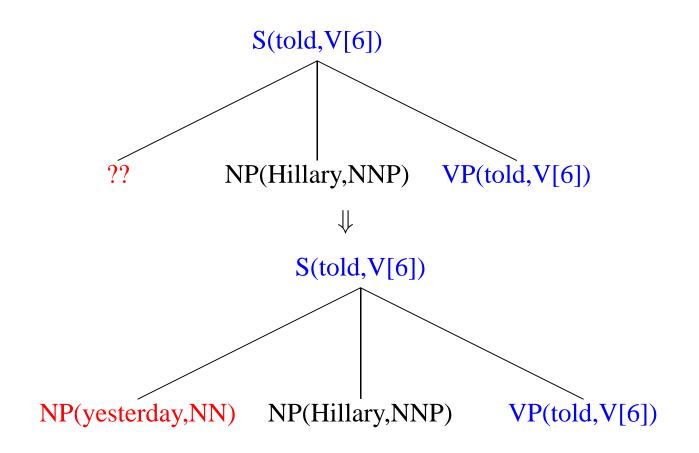
• $\Delta = 1$ if position is adjacent to the head.



$$P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_d(\text{NP(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 1)$$

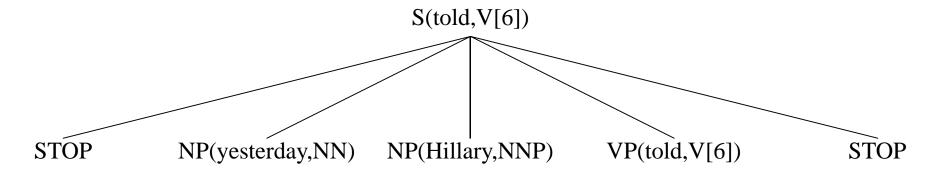
A Refinement: Adding a Distance Variable

• $\Delta = 1$ if position is adjacent to the head.



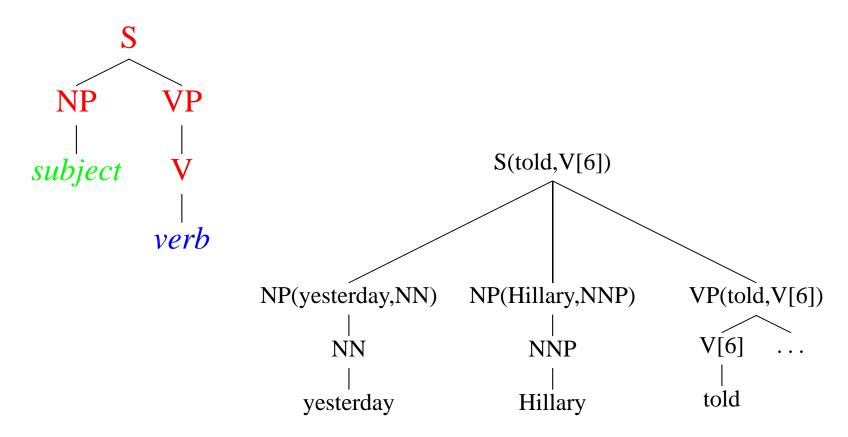
 $P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_d(\text{NP(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT}) \times P_d(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0)$

The Final Probabilities



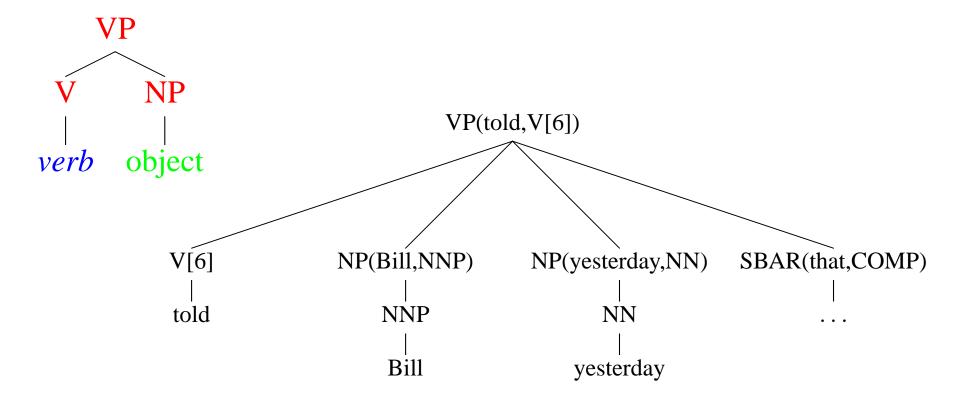
```
P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_d(\text{NP(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 1) \times P_d(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0) \times P_d(\text{STOP} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0) \times P_d(\text{STOP} \mid \text{S,VP,told,V[6],RIGHT,} \Delta = 1)
```

Adding the Complement/Adjunct Distinction



- *Hillary* is the subject
- yesterday is a temporal modifier
- But nothing to distinguish them.

Adding the Complement/Adjunct Distinction



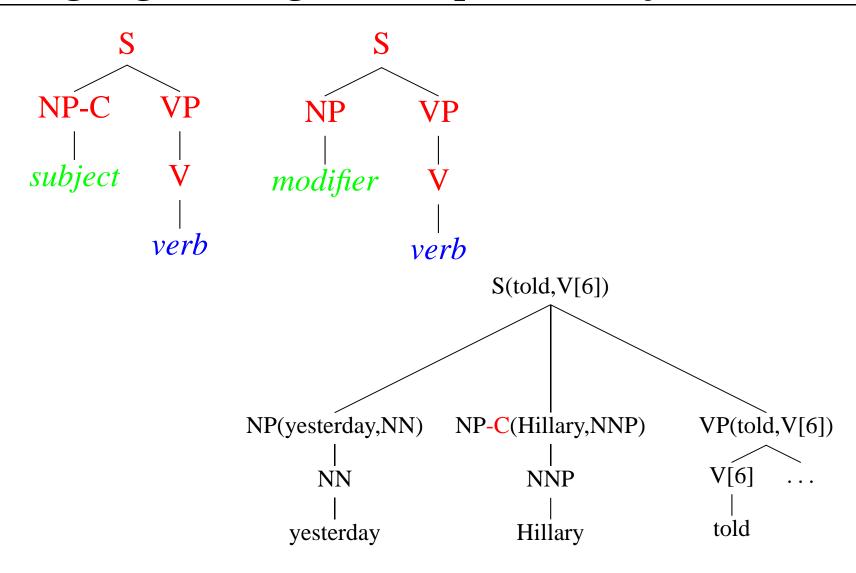
- *Bill* is the object
- yesterday is a temporal modifier
- But nothing to distinguish them.

Complements vs. Adjuncts

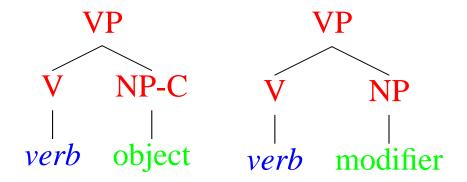
- Complements are closely related to the head they modify, adjuncts are more indirectly related
- Complements are usually arguments of the thing they modify yesterday Hillary told . . . \Rightarrow *Hillary* is doing the *telling*
- Adjuncts add modifying information: time, place, manner etc. yesterday Hillary told . . . \Rightarrow *yesterday* is a *temporal modifier*
- Complements are usually required, adjuncts are optional

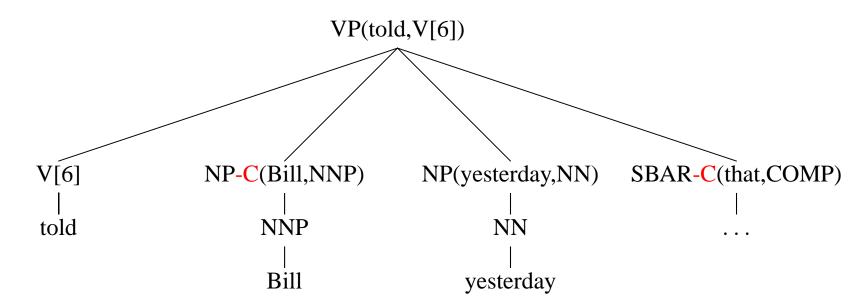
```
yesterday Hillary told . . . (grammatical) vs. Hillary told . . . (grammatical) vs. yesterday told . . . (ungrammatical)
```

Adding Tags Making the Complement/Adjunct Distinction



Adding Tags Making the Complement/Adjunct Distinction





Adding Subcategorization Probabilities

• Step 1: generate category of head child

 $P_h(\mathbf{VP} \mid \mathbf{S}, \text{told}, \mathbf{V[6]})$

```
S(told,V[6])

↓

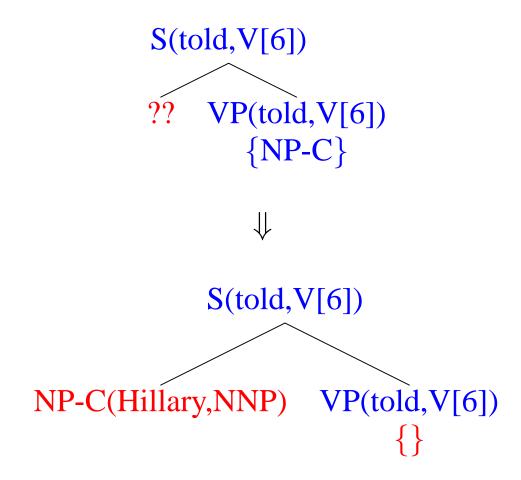
S(told,V[6])

VP(told,V[6])
```

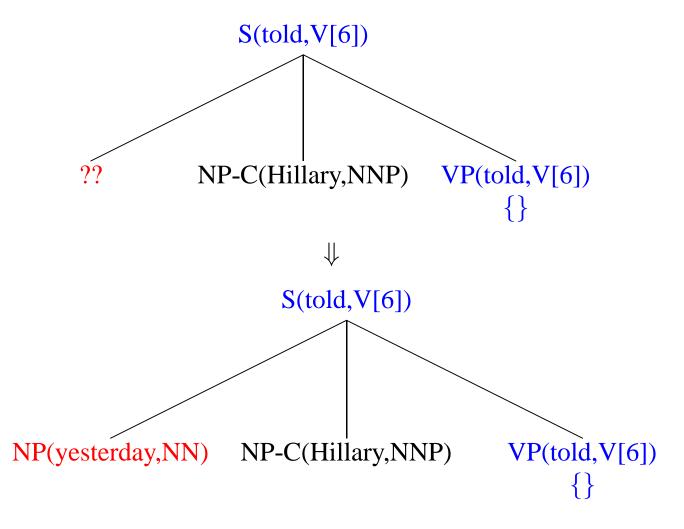
Adding Subcategorization Probabilities

• Step 2: choose left **subcategorization frame**

• Step 3: generate left modifiers in a Markov chain

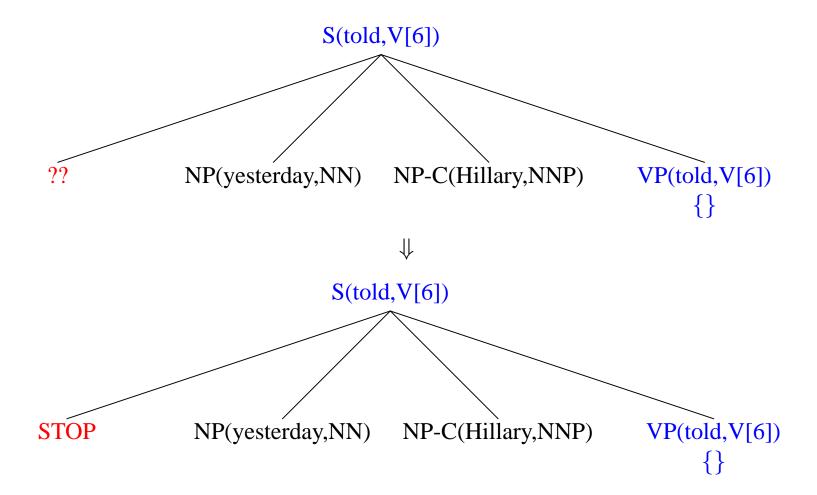


$$P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]}) \times P_d(\text{NP-C(Hillary,NNP}) \mid \text{S,VP,told,V[6],LEFT,\{NP-C\}})$$



$$P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]})$$

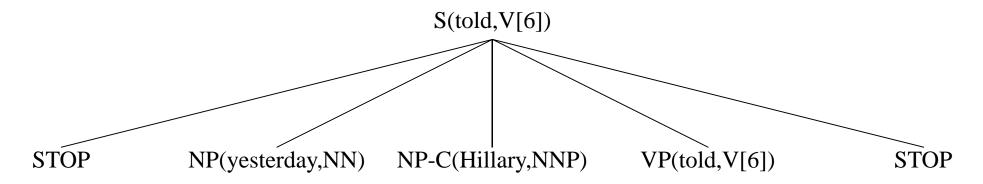
 $P_d(\text{NP-C(Hillary,NNP}) \mid \text{S,VP,told,V[6],LEFT,\{NP-C\}}) \times$
 $P_d(\text{NP(yesterday,NN}) \mid \text{S,VP,told,V[6],LEFT,\{\}})$



$$P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]})$$

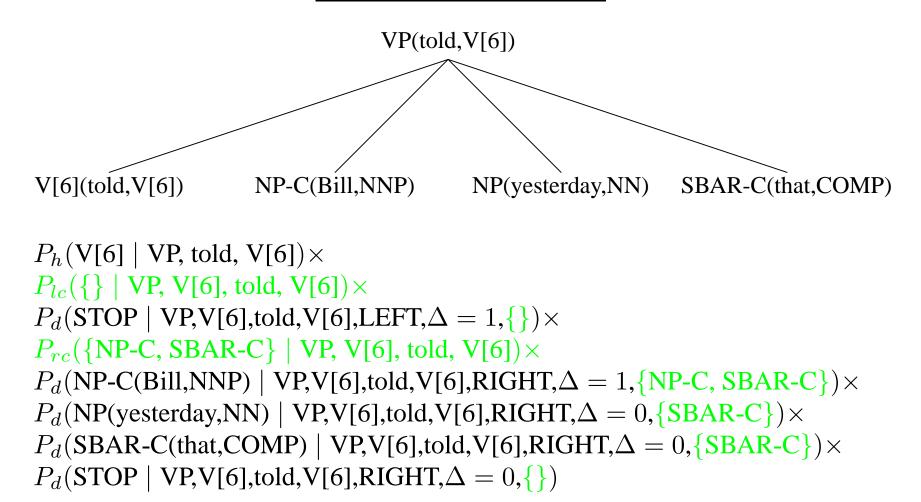
 $P_d(\text{NP-C(Hillary,NNP}) \mid \text{S,VP,told,V[6],LEFT,}\{\text{NP-C}\}) \times$
 $P_d(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT,}\{\}) \times$
 $P_d(\text{STOP} \mid \text{S,VP,told,V[6],LEFT,}\{\})$

The Final Probabilities



```
P_h(\text{VP} \mid \text{S, told, V[6]}) \times \\ P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]}) \times \\ P_d(\text{NP-C(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 1, \{\text{NP-C}\}) \times \\ P_d(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0, \{\}) \times \\ P_d(\text{STOP} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0, \{\}) \times \\ P_{rc}(\{\} \mid \text{S, VP, told, V[6]}) \times \\ P_d(\text{STOP} \mid \text{S,VP,told,V[6],RIGHT,} \Delta = 1, \{\})
```

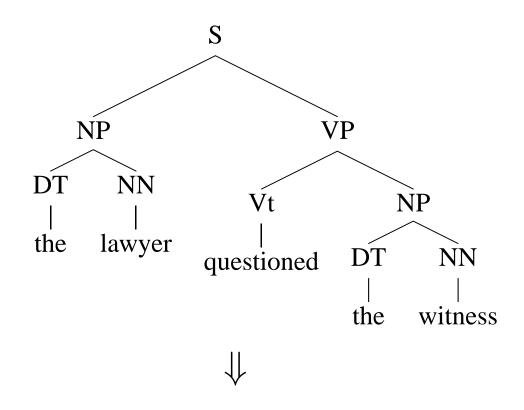
Another Example



Summary

- Identify heads of rules \Rightarrow dependency representations
- Presented two variants of PCFG methods applied to lexicalized grammars.
 - Break generation of rule down into small (markov process) steps
 - Build dependencies back up (distance, subcategorization)

Evaluation: Representing Trees as Constituents



Label	Start Point	End Point
NP	1	2
NP	4	5
VP	3	5
S	1	5

Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C = number correct = 6

$$\text{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \quad \text{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

$$Precision = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Results

Method	Recall	Precision
PCFGs (Charniak 97)	70.6%	74.8%
Conditional Models – Decision Trees (Magerman 95)	84.0%	84.3%
Lexical Dependencies (Collins 96)	85.3%	85.7%
Conditional Models – Logistic (Ratnaparkhi 97)	86.3%	87.5%
Generative Lexicalized Model (Charniak 97)	86.7%	86.6%
Model 1 (no subcategorization)	87.5%	87.7%
Model 2 (subcategorization)	88.1%	88.3%

Effect of the Different Features

MODEL	A	V	R	P
Model 1	NO	NO	75.0%	76.5%
Model 1	YES	NO	86.6%	86.7%
Model 1	YES	YES	87.8%	88.2%
Model 2	NO	NO	85.1%	86.8%
Model 2	YES	NO	87.7%	87.8%
Model 2	YES	YES	88.7%	89.0%

Results on Section 0 of the WSJ Treebank. Model 1 has no subcategorization, Model 2 has subcategorization. A = YES, V = YES mean that the adjacency/verb conditions respectively were used in the distance measure. $\mathbf{R/P} = \text{recall/precision}$.

Weaknesses of Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

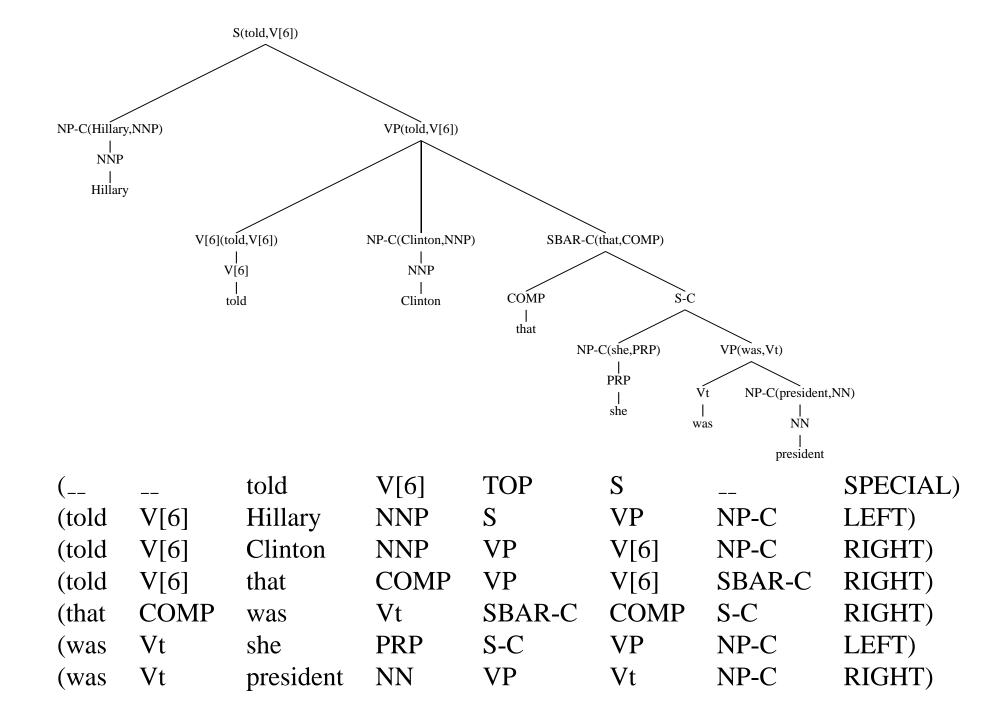
Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

NP attachment:

(S (NP The men) (VP dumped (NP (NP sacks) (PP of (NP the substance)))))

VP attachment:

(S (NP The men) (VP dumped (NP sacks) (PP of (NP the substance))))



Dependency Accuracies

- All parses for a sentence with n words have n dependencies Report a single figure, dependency accuracy
- Model 2 with all features scores 88.3% dependency accuracy (91% if you ignore non-terminal labels on dependencies)
- Can calculate precision/recall on particular dependency types
 e.g., look at all subject/verb dependencies ⇒
 all dependencies with label (S,VP,NP-C,LEFT)

 $Recall = \frac{number\ of\ subject/verb\ dependencies\ correct}{number\ of\ subject/verb\ dependencies\ in\ gold\ standard}$

 $Precision = \frac{number of subject/verb dependencies correct}{number of subject/verb dependencies in parser's output}$

R	CP	P	Count	Relation	Rec	Prec
1	29.65	29.65	11786	NPB TAG TAG L	94.60	93.46
2	40.55	10.90	4335	PP TAG NP-C R	94.72	94.04
3	48.72	8.17	3248	S VP NP-C L	95.75	95.11
4	54.03	5.31	2112	NP NPB PP R	84.99	84.35
5	59.30	5.27	2095	VP TAG NP-C R	92.41	92.15
6	64.18	4.88	1941	VP TAG VP-C R	97.42	97.98
7	68.71	4.53	1801	VP TAG PP R	83.62	81.14
8	73.13	4.42	1757	TOP TOP S R	96.36	96.85
9	74.53	1.40	558	VP TAG SBAR-C R	94.27	93.93
10	75.83	1.30	518	QP TAG TAG R	86.49	86.65
11	77.08	1.25	495	NP NPB NP R	74.34	75.72
12	78.28	1.20	477	SBAR TAG S-C R	94.55	92.04
13	79.48	1.20	476	NP NPB SBAR R	79.20	79.54
14	80.40	0.92	367	VP TAG ADVP R	74.93	78.57
15	81.30	0.90	358	NPB TAG NPB L	97.49	92.82
16	82.18	0.88	349	VP TAG TAG R	90.54	93.49
17	82.97	0.79	316	VP TAG SG-C R	92.41	88.22

Accuracy of the 17 most frequent dependency types in section 0 of the treebank, as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage; Rec = Recall; Prec = precision.

Туре	Sub-type	Description	Count	Recall	Precision
Complement to a verb	S VP NP-C L	Subject	3248	95.75	95.11
	VP TAG NP-C R	Object	2095	92.41	92.15
6495 = 16.3% of all cases	VP TAG SBAR-C R		558	94.27	93.93
	VP TAG SG-C R		316	92.41	88.22
	VP TAG S-C R		150	74.67	78.32
	S VP S-C L		104	93.27	78.86
	S VP SG-C L		14	78.57	68.75
	TOTAL		6495	93.76	92.96
Other complements	PP TAG NP-C R		4335	94.72	94.04
	VP TAG VP-C R		1941	97.42	97.98
7473 = 18.8% of all cases	SBAR TAG S-C R		477	94.55	92.04
	SBAR WHNP SG-C R		286	90.56	90.56
	PP TAG SG-C R		125	94.40	89.39
	SBAR WHADVP S-C R		83	97.59	98.78
	PP TAG PP-C R		51	84.31	70.49
	SBAR WHNP S-C R		42	66.67	84.85
	SBAR TAG SG-C R		23	69.57	69.57
	PP TAG S-C R		18	38.89	63.64
	SBAR WHPP S-C R		16	100.00	100.00
	S ADJP NP-C L		15	46.67	46.67
	PP TAG SBAR-C R		15	100.00	88.24
	TOTAL		7473	94.47	94.12

Type	Sub-type	Description	Count	Recall	Precision
PP modifi cation	NP NPB PP R		2112	84.99	84.35
	VP TAG PP R		1801	83.62	81.14
4473 = 11.2% of all cases	S VP PP L		287	90.24	81.96
	ADJP TAG PP R		90	75.56	78.16
	ADVP TAG PP R		35	68.57	52.17
	NP NP PP R		23	0.00	0.00
	PP PP PP L		19	21.05	26.67
	NAC TAG PP R		12	50.00	100.00
	TOTAL		4473	82.29	81.51
Coordination	NP NP NP R		289	55.71	53.31
	VP VP VP R		174	74.14	72.47
763 = 1.9% of all cases	SSSR		129	72.09	69.92
	ADJP TAG TAG R		28	71.43	66.67
	VP TAG TAG R		25	60.00	71.43
	NX NX NX R		25	12.00	75.00
	SBAR SBAR SBAR R		19	78.95	83.33
	PP PP PP R		14	85.71	63.16
	TOTAL		763	61.47	62.20

Type	Sub-type	Description	Count	Recall	Precision
Mod'n within BaseNPs	NPB TAG TAG L		11786	94.60	93.46
	NPB TAG NPB L		358	97.49	92.82
12742 = 29.6% of all cases	NPB TAG TAG R		189	74.07	75.68
	NPB TAG ADJP L		167	65.27	71.24
	NPB TAG QP L		110	80.91	81.65
	NPB TAG NAC L		29	51.72	71.43
	NPB NX TAG L		27	14.81	66.67
	NPB QP TAG L		15	66.67	76.92
	TOTAL		12742	93.20	92.59
Mod'n to NPs	NP NPB NP R	Appositive	495	74.34	75.72
	NP NPB SBAR R	Relative clause	476	79.20	79.54
1418 = 3.6% of all cases	NP NPB VP R	Reduced relative	205	77.56	72.60
	NP NPB SG R		63	88.89	81.16
	NP NPB PRN R		53	45.28	60.00
	NP NPB ADVP R		48	35.42	54.84
	NP NPB ADJP R		48	62.50	69.77
	TOTAL		1418	73.20	75.49

Туре	Sub-type	Description	Count	Recall	Precision
Sentential head	TOP TOP S R		1757	96.36	96.85
	TOP TOP SINV R		89	96.63	94.51
1917 = 4.8% of all cases	TOP TOP NP R		32	78.12	60.98
	TOP TOP SG R		15	40.00	33.33
	•••				
	TOTAL		1917	94.99	94.99
Adjunct to a verb	VP TAG ADVP R		367	74.93	78.57
	VP TAG TAG R		349	90.54	93.49
2242 = 5.6% of all cases	VP TAG ADJP R		259	83.78	80.37
	S VP ADVP L		255	90.98	84.67
	VP TAG NP R		187	66.31	74.70
	VP TAG SBAR R		180	74.44	72.43
	VP TAG SG R		159	60.38	68.57
	S VP TAG L		115	86.96	90.91
	S VP SBAR L		81	88.89	85.71
	VP TAG ADVP L		79	51.90	49.40
	S VP PRN L		58	25.86	48.39
	S VP NP L		45	66.67	63.83
	S VP SG L		28	75.00	52.50
	VP TAG PRN R		27	3.70	12.50
	VP TAG S R		11	9.09	100.00
	TOTAL		2242	75.11	78.44

Some Conclusions about Errors in Parsing

- "Core" sentential structure (complements, NP chunks) recovered with over 90% accuracy.
- Attachment ambiguities involving adjuncts are resolved with much lower accuracy ($\approx 80\%$ for PP attachment, $\approx 50-60\%$ for coordination).