
6.864: Lecture 6 (September 27th, 2005)


The EM Algorithm Part II




Hidden Markov Models


A hidden Markov model (N, �, �) consists of the following 
elements: 

• N is a positive integer specifying the number of states in the 
model. Without loss of generality, we will take the N ’th state 
to be a special state, the final or stop state. 

• � is a set of output symbols, for example � = {a, b} 

• � is a vector of parameters. 



• � is a vector of parameters. It contains three types of 
parameters: 

–	�j for j = 1 . . . N is the probability of choosing state j as an initial 
state. 

–	aj,k for j = 1 . . . (N − 1), k = 1 . . . N , is the probability of 
transitioning from state j to state k. 

–	bj (o) for j = 1 . . . (N − 1), and o � �, is the probability of emitting 
symbol o from state j. 

Thus it can be seen that � is a vector of N + (N − 1)N + (N − 1)|�| 
parameters. 

•	 Note that we have the following constraints: 

–	
�N 

�j = 1.j=1 

–	for all j, 
�N 

aj,k = 1.k=1 

–	for all j, 
�

o�� bj (o) = 1. 



Hidden Markov Models


• An HMM specifies a probability for each possible (x, y) pair, 
where x is a sequence of symbols drawn from �, and y is a 
sequence of states drawn from the integers 1 . . . (N − 1). The 
sequences x and y are restricted to have the same length. 

•	 E.g., say we have an HMM with N = 3, � = {a, b}, and with 
some choice of the parameters �. Take x = �a, a, b, b∈ and 
y = �1, 2, 2, 1∈. Then in this case, 

P (x, y|�) = �1 a1,2 a2,2 a2,1 a1,3 b1(a) b2(a) b2(b) b1(b) 



Hidden Markov Models


In general, if we have the sequence x = x1, x2, . . . xn where 
each xj � �, and the sequence y = y1, y2, . . . yn where each 
yj � 1 . . . (N − 1), then 

P (x, y|�) = �y1 ayn,N 

n � 

=2j


ayj−1 ,yj


n � 

=1j


byj (xj )




EM: the Basic Set-up


1
 2
We have some data points—a “sample”—x
 m• , x , . . . x . 

i
• For example, each x might be a sentence such as “the

dog slept”: this will be the case in EM applied to

hidden Markov models (HMMs) or probabilistic context-free-


i
grammars (PCFGs). (Note that in this case each x is a 
sequence, which we will sometimes write xi 

1
, x
i 2
, . . . x
i where ni 

ni	 is the length of the sequence.) 

•	 Or in the three coins example (see the lecture notes), each xi


might be a sequence of three coin tosses, such as HHH, THT,

or TTT.




• We have a parameter vector �. For example, see the 
description of HMMs in the previous section. As another 
example, in a PCFG, � would contain the probability P (� � 
�|�) for every rule expansion � � � in the context-free 
grammar within the PCFG. 



• We have a model P (x, y|�): A function that for any x, y, � 
triple returns a probability, which is the probability of seeing 
x and y together given parameter settings �. 

• This model defines a joint distribution over x and y, but that we 
can also derive a marginal distribution over x alone, defined 
as 

P (x|�) = 

 

P (x, y|�)

y 



1 2• Given the sample x , x , . . . xm, we define the likelihood as 

L�(�) = 
=1 

m � 

i

P (x
i
|�) = 
=1 

m � 

i


 

y

P (x
i
, y|�) 

and we define the log-likelihood as 

L(�) = log L�(�) = 
=1 

m 
 

i

log P (x
i
|�) =

m 
 

i=1 

log


 

y

P (x
i
, y|�)




��� 

• The maximum-likelihood estimation problem is to find 

�M L = arg max L(�) 

where � is a parameter space specifying the set of allowable 
parameter settings. In the HMM example, � would enforce 
the restrictions 

�
j
N 
=1 �j = 1, for all j = 1 . . . (N − 1), 

�N 
k=1 aj,k = 1, and for all j = 1 . . . (N − 1), 

�
o�� bj (o) = 1. 



Products of Multinomial (PM) Models


• In a PCFG, each sample point x is a sentence, and each y is a 
possible parse tree for that sentence. We have 

P (x, y|�) =

n � 

=1i


P (�i � �i|�i)


assuming that (x, y) contains the n context-free rules �i � �i 

for i = 1 . . . n. 

• For example, if (x, y) contains the rules S � NP VP, 
NP � Jim, and VP � sleeps, then 

P (x, y|�) = P (S � NP VP|S)×P (NP � Jim|NP)×P (VP � sleeps|VP)




Products of Multinomial (PM) Models


• HMMs define a model with a similar form. Recall the 
example in the section on HMMs, where we had the following 
probability for a particular (x, y) pair: 

P (x, y|�) = �1 a1,2 a2,2 a2,1 a1,3 b1(a) b2(a) b2(b) b1(b) 



� 

Products of Multinomial (PM) Models


• In both HMMs and PCFGs, the model can be written in the 
following form 

P (x, y|�) = �Count(x,y,r) 
r 

r=1...|�| 

Here: 

–	�r for r = 1 . . . |�| is the r’th parameter in the model 

– Count(x, y, r) for r = 1 . . . |�| is a count corresponding 
to how many times �r is seen in the expression for 
P (x, y|�). 

•	 We will refer to any model that can be written in this form as 
a product of multinomials (PM) model. 



The EM Algorithm for PM Models


• We will use �t to denote the parameter values at the t’th 
iteration of the algorithm. 

• In the initialization step, some choice for initial parameter 
settings �0 is made. 

• The algorithm then defines an iterative sequence of parameters 
�0 , �1 , . . . , �T , before returning �T as the final parameter 
settings. 

• Crucial detail: deriving �t from �t−1 



, �


The EM Algorithm for PM Models: Step 1


• At each iteration of the algorithm, two steps are taken. 

• Step 1: expected counts Count(r) are calculated for each 
parameter �r
 in the model. 

Count(r) = 
=1 

m 
 

i


 

y

P (y|x
i
 t−1)Count( i
x , y, r) 



The EM Algorithm for PM Models: Step 1


• For example, say we are estimating the parameters of a PCFG 
using the EM algorithm. Take a particular rule, such as 
S � NP V P . Then at the t’th iteration, 

Count(S � NP V P )) = 
=1 

m 
 

i



 

y


P (y|x
i
, �t−1)Count(x i
, y, S � NP V P )




The EM Algorithm for PM Models: Step 2


t• Step 2: Calculate the updated parameters � . For example, 
we would re-estimate 

Count(S � NP V P )
P (S � NP V P |S) = �

S���R Count(S � �) 

Note that the denominator in this term involves a summation 
over all rules of the form S � � in the grammar. This term 
ensures that 

�
S���R P (S � �|S) = 1, the usual constraint 

on rule probabilities in PCFGs. 



The EM Algorithm for HMMs: Step 1


• Define Count(xi
, y, p
 � q) to be the number of times a 
transition from state p to state q is seen in y. 

• Step 1

=1 


 

y


m 
 

i


i


: Calculate expected counts such as


Count(1 � 2) = P (y|x
, �t−1)Count(x i
, y, 1 � 2)


• (Note: similar counts will be calculated for emission and 
initial-state parameters) 



The EM Algorithm for HMMs: Step 2


•	 Step 2: Re-estimate transition parameter as 

Count(1 � 2) 
a1,2 = �N 

k=1 Count(1 � k) 

where in this case the denominator ensures that 
�N 

k=1 a1,k = 1. 

•	 Similar calculations will be performed for other transition 
parameters, as well as the initial state parameters and emission 
parameters. 



1 2 mInputs: A sample of m points, x , x , . . . , x . A model P (x, y|�) which takes the 
following form: 

Count(x,y,r)P (x, y|�) = 
� 

�r 

r=1...|�| 

0Initialization: Choose some initial value for the parameters, call this � . 

Algorithm: For t = 1 . . . T , 

• For r = 1 . . . |�|, set Count(r) = 0 

• For i = 1 . . . m, 

i– For all y, calculate ty = P (x , y|�t−1) 

– Set sum =
�

y ty 

i– For all y, set uy = ty /sum (note that uy = P (y|x , �t−1)) 
i– For all r = 1 . . . |�|, set Count(r) = Count(r) +

�
y uy Count(x , y, r) 

�

• For all r = 1 . . . |�|, set


r
t = 

Count(r)

Z 

where Z is a normalization constant that ensures that the multinomial distribution 
tof which �r is a member sums to 1.


T
Output: Return parameter values �



The Forward-Backward Algorithm for HMMs


i• Define Count(x , y, p � q) to be the number of times a 
transition from state p to state q is seen in y. 

• Step 1: Calculate expected counts such as 

Count(1 � 2) = 

 

y


m 
 

=1i


P (y|x
i , �t−1)Count(x i , y, 1 � 2) 

• A problem: the inner sum 

 

y


i , �t−1P (y|x )Count(x i , y, 1 � 2) 



The Forward-Backward Algorithm for HMMs


• Fortunately, there is a way of avoiding this brute force strategy 
with HMMs, using a dynamic programming algorithm called 
the forward-backward algorithm. 

•	 Say that we could efficiently calculate the following quantities 
for any x of length n, for any j � 1 . . . n, and for any p � 
1 . . . (N − 1) and q � 1 . . . N : 

P (yj = p, yj+1 = q|x, �) =




P (y|x, �) 
y:yj =p,yj+1=q 

• The inner sum can now be re-written using terms such as this: 


 

y

P (y|x
i , �t−1)Count(x i , y, p � q) =


ni 
 

=1j


P (yj = p, yj+1 = q|x
i , �t−1
) 



The Forward Probabilities


Given an input sequence x1 . . . xn, we will define the forward 
probabilities as being 

�p(j) = P (x1 . . . xj−1, yj = p | �) 

for all j � 1 . . . n, for all p � 1 . . . N − 1. 



The Forward Probabilities


Given an input sequence x1 . . . xn, we will define the backward 
probabilities as being 

�p(j) = P (xj . . . xn | yj = p, �) 

for all j � 1 . . . n, for all p � 1 . . . N − 1. 



Given the forward and backward probabilities, the first thing we can 
calculate is the following: 

Z = P (x1, x2, . . . xn|�) = 

 

�p(j)�p(j) 
p 

for any j � 1 . . . n. Thus we can calculate the probability of the 
sequence x1, x2, . . . xn being emitted by the HMM. 



We can calculate the probability of being in any state at any 
position: 

�p(j)�p(j)
P (yj = p|x, �) = 

Z 
for any p, j. 



We can calculate the probability of each possible state transition, as 
follows: 

P (yj = p, yj+1 = q|x, �) = 
�p(j)ap,q bp(oj )�q (j + 1) 

Z 

for any p, q, j. 



•	 Given an input sequence x1 . . . xn , for any p � 1 . . . N , j � 1 . . . n, 

�p(j) = P (x1 . . . xj−1, yj = p | �) forward probabilities 

• Base case: 
�p(1) = �p for all p 

• Recursive case: 

�p(j+1) =

 

�q (j)aq,p bq (xj ) for all p = 1 . . . N − 1 and j = 1 . . . n − 1 
q 

�

• Given an input sequence x1 . . . xn :


p (j) = P (xj . . . xn | yj = p, �) backward probabilities


• Base case: 
�p (n) = ap,N bp(xn) for all p = 1 . . . N − 1 

• Recursive case: 

�p(j) =

 

ap,q bp(xj )�q (j +1) for all p = 1 . . . N − 1 and j = 1 . . . n − 1 
q 



Justification for the Algorithm


We will make use of a particular directed graph. The graph 
is associated with a particular input sequence x1, x2, . . . xn, and 
parameter vector �, and has the following vertices: 

• A “source” vertex, which we will label s. 

• A “final” vertex, which we will label f . 

• For all j � 1 . . . n, for all p � 1 . . . N−1, there is an associated 
vertex which we will label �j, p∈. 



Justification for the Algorithm


Given this set of vertices, we define the following directed edges: 

•	 There is an edge from s to each vertex �1, p∈ for p = 1 . . . N − 
1. Each such edge has a weight equal to �p. 

•	 For any j � 1 . . . n− 1, and p, q � 1 . . . N − 1, there is an edge 
from vertex �j, p∈ to vertex �(j + 1), q∈. This edge has weight 
equal to ap,q bp(xj ). 

• There is an edge from each vertex �n, p∈ for p = 1 . . . N − 1 
to the final vertex f . Each such edge has a weight equal to 
ap,N bp(xn) 



Justification for the Algorithm


The resulting graph has a large number of paths from the source s to 
the final state f ; each path goes through a number of intermediate 
vertices. The weight of an entire path will be taken as the product 
of weights on the edges in the path. You should be able to convince 
yourself that: 

1. For every state sequence y1, y2, . . . yn in the original HMM, 
there is a path through with graph that has the sequence of 
states s, �1, y1∈, . . . , �n, yn∈, f 

2. The path associated with	state sequence y1, y2, . . . yn has 
weight equal to P (x, y|�) 



Justification for the Algorithm


We can now interpret the forward and backward probabilities as 
following: 

• �p(j) is the sum of weights of all paths from s to the state 
�j, p∈ 

• �p(j) is the sum of weights of all paths from state �j, p∈ to the 
final state f 



Another Application of EM in NLP: Topic Modeling


• Say we have a collection of m documents 

i• Each document x for i = 1 . . .m is a sequence of words 
i 
1
, x
i 2
, . . . x
i
n
x


• E.g., we might have a few thousand articles from the New York 
Times 



Another Application of EM in NLP: Topic Modeling


i• We’ll assume that y for i = 1 . . .m is a hidden “topic 
variable”. yi can take on any of the values 1, 2, . . .K 

•	 For any document xi, and topic variable y, we write 

P (x i , y|�) = P (y)

n � 

=1j


P (x
i j |y) 

•	 � contains two types of parameters: 

–	P (y) for y � 1 . . . K is the probability of selecting topic y 

–	P (w|y) for y � 1 . . . K, w in some vocabulary of possible words, is 
the probability of generating the word w given topic y 



� � 

• As before, we can use EM to find


�ML = arg max L(�) = arg max 

 

i


log


 

y

P (x
i , y|�)


• Result: for each of the K topics, we have a different 
distribution over words, P (w|y) 



Results from Hofmann, SIGIR 1999


• Applied the method to 15,000 documents, using k = 128 
topics 

• Examples of 6 topics (in each case, table shows the 10 words 
for which P (w|y) is maximized): 

earth 

peace 

plane, airport, crash, flight, safety, aircraft, air, passenger, board, airline 
space, shuttle, mission, astronauts, launch, station, crew, nasa, satellite, 

home, family, like, love, kids, mother, life, happy, friends, cnn 
film, movie, music, new, best, hollywood, love, actor, entertainment, star 
un, bosnian, serbs, bosnia, serb, sarajevo, nato, peacekeepers, nations, 

refugees, aid, rwanda, relief, people, camps, zaire, camp, food, rwandan 



Another Application of EM in NLP: Word Clustering


• Say we have a collection of m bigrams 

Each bigram consists of a word pair w i 
2


i , w1
 where w
i 2
 follows • 
i 
1
w

• We’d like to build a model of P (w2|w1)




Another Application of EM in NLP: Word Clustering


We’ll assume that y
i
 for i = 1 . . .m is a hidden “cluster• 
variable”. yi can take on any of the values 1, 2, . . .K 

For any bigram wi 
1


i 
2
, we write
• , w



�) = ,

y

P (w
i 

2
|w
i 1

i 
2
|y)P (y|w
i 1
)P (w 

•	 � contains two types of parameters: 

–	P (y|w1) for y � 1 . . .K is the probability of selecting cluster y given 
that the first word in the bigram is w1 

–	P (w2|y) for y � 1 . . . K, w2 in some vocabulary of possible words, 
is the probability of selecting w2, given cluster y 



� � 

• As before, we can use EM to find


�ML = arg max L(�) = arg max 

 

i


log


 

y

P (w
 i )1


i | ) ( |Py y w2


• Result: for each of the K clusters, we have the distributions 
P (w2|y) and P (y|w1) 

• See Saul and Pereira, 1997, for more details 


