
6.867 Machine learning 

Final exam 

December 3, 2004 

Your name and MIT ID: 

(Optional) The grade you would give to yourself + a brief justification.
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Problem 1
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Figure 1: Labeled training points for problem 1. 

Consider the labeled training points in Figure 1, where ’x’ and ’o’ denote positive and 
negative labels, respectively. We wish to apply AdaBoost with decision stumps to solve 
the classification problem. In each boosting iteration, we select the stump that minimizes 
the weighted training error, breaking ties arbitrarily. 

1.	 (3 points) In figure 1, draw the decision boundary corresponding to the first decision 
stump that the boosting algorithm would choose. Label this boundary (1), and also 
indicate +/- side of the decision boundary. 

2.	 (2 points) In the same figure 1 also circle the point(s) that have the highest weight 
after the first boosting iteration. 

3. (2 points) What is the weighted error of the first decision stump after 
the first boosting iteration, i.e., after the points have been reweighted? 

4. (3 points) Draw the decision boundary corresponding to the second decision stump, 
again in Figure 1, and label it with (2), also indicating the +/- side of the boundary. 
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5.	 (3 points) Would some of the points be misclassified by the combined classifier after 
the two boosting iterations? Provide a brief justification. (the points will be awarded 
for the justification, not whether your y/n answer is correct) 

Problem 2 

1.	 (2 points) Consider a linear SVM trained with n labeled points in R2 without slack 
penalties and resulting in k = 2 support vectors (k < n). By adding one additional 
labeled training point and retraining the SVM classifier, what is the maximum number 
of support vectors in the resulting solution? 

( ) k


( ) k + 1


( ) k + 2


( ) n + 1


2. We train two SVM classifiers to separate points in R2 . The classifiers differ only in 
terms of the kernel function. Classifier 1 uses the linear kernel K1(x, x�) = xT x�, and 
classifier 2 uses K2(x, x�) = p(x)p(x�), where p(x) is a 3-component Gaussian mixture 
density, estimated on the basis of related other problems. 

(a) (3 points) What is the VC-dimension of the second SVM classifier 
that uses kernel K2(x, x�)? 

(b) (T/F – 2 points) The second SVM classifier can only separate points 
that are likely according to p(x) from those that have low probability 
under p(x). 

(c)	 (4 points) If both SVM classifiers achieve zero training error on n labeled 
points, which classifier would have a better generalization guarantee? Provide a 
brief justification. 
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Problem 3
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Figure 2: Data sets for clustering. Points are located at integer coordinates. 

1.	 (4 points) First consider the data plotted in Figure 2a, which consist of two rows of 
equally spaced points. If k-means clustering (k = 2) is initialised with the two points 
whose coordinates are (9, 3) and (11, 3), indicate the final clusters obtained (after the 
algorithm converges) on Figure 2a. 

2.	 (4 points) Now consider the data in Figure 2b. We will use spectral clustering 
to divide these points into two clusters. Our version of spectral clustering uses a 
neighbourhood graph obtained by connecting each point to its two nearest neighbors 
(breaking ties randomly), and by weighting the resulting edges between points xi and 
xj by Wij = exp(−||xi − xj||). Indicate on Figure 2b the clusters that we will obtain 
from spectral clustering. Provide a brief justification. 

3. (4 points) Can the solution obtained in the previous part for the data in Figure 2b 
also be obtained by k-means clustering (k = 2)? Justify your answer. 
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Figure 3: Training sample from a mixture of two linear models 

Problem 4 

The data in Figure 3 comes from a mixture of two linear regression models with Gaussian 
noise: 

P (y|x; θ) = p1N (y ; w10 + w11x, σ2) + p2N (y ; w20 + w21x, σ2)1	 2 

where p1 + p2 = 1 and θ = (p1, p2, w10, w11, w20, w21, σ1, σ2). We hope to estimate θ from 
such data via the EM algorithm. 

To this end, let z ∈ {1, 2} be the mixture index, variable indicating which of the regression 
models is used to generate y given x. 

1.	 (6 points) Connect the random variables X, Y , and Z with directed edges so that 
the graphical model on the left represents the mixture of linear regression models 
described above, and the one on the right represents a mixture-of-experts model. For 
both models, Y denotes the output variable, X the input, and Z is the choice of the 
linear regression model or expert. 

mixture of linear regressions	 mixture of experts 

X Z	 X Z 

Y	 Y 
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We use a single plot to represent the model parameters (see the figure below). Each 
linear regression model appears as a solid line (y = wi0 + wi1x) in between two 
parallel dotted lines at vertical distance 2σi to the solid line. Thus each regression 
model “covers” the data that falls between the dotted lines. When w10 = w20 and 
w11 = w21 you would only see a single solid line in the figure; you may still see two 
different sets of dotted lines corresponding to different values of σ1 and σ2. The solid 
bar to the right represents p1 (and p2 = 1 − p1). 

For example, if 

θ	 = ( p1, p2, w10, w11, w20, w21, σ1, σ2) 
= ( 0.35, 0.65, 0.5, 0, 0.85, −0.7, 0.05, 0.15) 

the plot is 
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2.	 (6 points) We are now ready to estimate the parameters θ via EM. There are, 
however, many ways to initialize the parameters for the algorithm. 

On the next page you are asked to connect 3 different initializations (left column) with 
the parameters that would result after one EM iteration (right column). Different 
initializations may lead to the same set of parameters. Your answer should consist of 
3 arrows, one from each initialization. 
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Initialization Next Iteration
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Problem 5 

Assume that the following sequences are very long and the pattern highlighted with spaces 
is repeated: 

Sequence 1: 1 0 0 1 0 0 1 0 0 1 0 0 ... 1 0 0 

Sequence 2: 1 1 0 0 1 0 0 1 0 0 ... 1 0 0 

1.	 (4 points) If we model each sequence with a different first-order HMM, what is the 
number of hidden states that a reasonable model selection method would report? 

HMM for Sequence 1 HMM for Sequence 2 

No. of hidden states 

2.	 (2 points) The following Bayesian network depicts a sequence of 5 observations from 
an HMM, where s1, s2, s3, s4, s5 is the hidden state sequence. 

s1 s2 s3 s4 s5 

x1 x2 x4 x5 

Are x1 and x5 independent given x3? Briefly justify your answer. 

3.	 (3 points) Does the order of Markov dependencies in the observed sequence always 
determine the number of hidden states of the HMM that generated the sequence? 
Provide a brief justification. 
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x3



Problem 6 

We wish to develop a graphical model for the following transportation problem. A transport 
company is trying to choose between two alternative routes for commuting between Boston 
and New York. In an experiment, two identical busses leave Boston at the same but 
otherwise random time, TB . The busses take different routes, arriving at their (common) 
destination at times TN1 and TN2. 

Transit time for each route depends on the congestion along the route, and the two con
gestions are unrelated. Let us represent the random delays introduced along the routes by 
variables C1 and C2. Finally, let F represent the identity of the bus which reaches New 
York first. We view F as a random variable that takes values 1 or 2. 

1.	 (6 points) Complete the following directed graph (Bayesian network) with edges 
so that it captures the relationships between the variables in this transportation 
problem. 
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2. (3 points) Consider the following directed graph as a possible representation of the 
independences between the variables TN1, TN2, and F only: 

Which of the following factorizations of the joint are consistent with the graph? 

P (TN1)P (TN2)P (F |TN1, TN2) 

P (TN1)P (TN2)P (F |TN1) 

P (TN1)P (TN2)P (F ) 
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Additional set of figures
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Initialization Next Iteration


0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

12


Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




s5s1 s2 

x1 x2 x3 x4 x5 

s3 s4 
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