
1 6.867 Machine learning, lecture 19 (Jaakkola) 

Lecture topics: 

• Markov chains (cont’d) 

Hidden Markov Models • 

Markov chains (cont’d) 

In the context of spectral clustering (last lecture) we discussed a random walk over the 
nodes induced by a weighted graph. Let Wij ≥ 0 be symmetric weights associated with the 
edges in the graph; Wij = 0 whenever edge doesn’t exist. We also assumed that Wii = 0 for 
all i. The graph defines a random walk where the probability of transitioning from node 
(state) i to node j is given by 

Wij
P (X(t + 1) = j|X(t) = i) = Pij = � 

Wij� 
(1) 

j� 

Note that self-transitions (going from i to i) are disallowed because Wii = 0 for all i. 
We can understand the random work as a homogeneous Markov chain: the probability of 
transitioning from i to j only depends on i, not the path that took the process to i. In other 
words, the current state summarizes the past as far as the future transitions are concerned. 
This is a Markov (conditional independence) property: 

P (X(t + 1) = j|X(t) = i, X(t − 1) = it−1, . . . , X(1) = i1) = P (X(t + 1) = j|X(t) = i) (2) 

The term “homogeneous” specifies that the transition probabilities are independent of time 
(the same probabilities are used whenever the random walk returns to i). 

We also defined ergodicity as follows: Markov chain is ergodic if there exist a finite m such 
that 

P (X(t + m) = j|X(t) = i) > 0 for all i and j (3) 

Simple weighted graphs need not define ergodic chains. Consider, for example, a weighted 
graph between two nodes 1 − 2 where W12 > 0. The resulting random walk is necessarily 
periodic, i.e., 121212 . . .. A Markov chain is ergodic only when all the states are communi
cating and the chain is aperiodic which is clearly not the case here. Similarly, even a graph 
1 − 2 − 3 with positive weights on the edges would not define an ergodic Markov chain. 
Every other state would necessarily be 2, thus the chain is periodic. The reason here is 
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that Wii = 0. By adding a positive self-transition, we can remove periodicity (random walk 
would stay in the same state a variable number of steps). Any connected weighted graph 
with positive weights and positive self-transitions gives rise to an ergodic Markov chain. 

Our definition of the random walk so far is a bit incomplete. We did not specify how 
the process started, i.e., we didn’t specify the initial state distribution. Let q(i) be the 
probability that the random walk is started from state i. We will use q as a vector of 
probabilities across k states (reserving n for the number training examples as usual). 

There are two ways of describing Markov chains: through state transition diagrams or as 
simple graphical models. The descriptions are complementary. A transition diagram is a 
directed graph over the possible states where the arcs between states specify all allowed 
transitions (those occuring with non-zero probability). See Figure 1 for examples. We 
could also add the initial state distribution as transitions from a dedicated initial (null) 
state (not shown in the figure). 

1 

1 

2 

2 

3 

Figure 1: Examples of transition diagrams defining non-ergodic Markov chains. 

In graphical models, on the other hand, we focus on explicating variables and their de
pendencies. At each time point the random walk is in a particular state X(t). This is a 
random variable. It’s value is only affected by the random variable X(t − 1) specifying 
the state of the random walk at the previous time point. Graphically, we can therefore 
write a sequence of random variables where arcs specify how the values of the variables are 
influenced by others (dependent on others). More precisely, X(t − 1) X(t) means that →
the value of X(t) depends on X(t − 1). Put another way, in simulating the random walk, 
we would have to know the value of X(t − 1) in order to sample a value for X(t). The 
graphical model is shown in Figure 2. 

State prediction 

We will cast the problem of calculating the predictive probabilities over states in a form 
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Figure 2: Markov chain as a graphical model. 

that will be useful for Hidden Markov Models later on. Since 

P (X(t + m) = j|X(t) = i) = [P m]ij (4) 

we can also write for any n 

k k

P (X(n) = j) = q(i)P (X(n) = j|X(1) = i) = q(i)[P n−1]ij (5) 
i=1 i=1 

In a vector form qT P n−1 is a row vector whose jth component is P (X(n) = j). Note that 
the matrix products involve summing over all the intermediate states until X(n) = j. More 
explicitly, let’s evaluate the sum over all the states x1, . . . , xn in the matrix form as 

n − 1 times � n−1 � �� � 
P (X(1) = x1) P (X(t + 1) = xt+1|X(t) = xt) = q T P P · · · P P 1 = 1 (6) 

x1,...,xn t=1 

This is a sum over kn possible state configurations (settings of x1, . . . , xn) but can be easily 
performed in terms of matrix products. We can understand this in terms of recursive eval
uation of t step probabilities αt(i) = P (X(t) = i). We will write αt for the corresponding 
column vector so that 

t − 1 times 

q T P P P P = αt
T (7) · · · 

Clearly, 

q T = α1 
T (8) 

αt
T 
−1P = αt

T , t > 1 (9) 
k

αt−1(i)Pij = αt(j) (10) 
i=1 

. . . 

X(t + 1) X(t − 1) X(t) 

. . . 

Estimation
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Markov models can be estimated easily from observed sequences of states. Given x1, . . . , xn 

(e.g., 1212221), the log-likelihood of the observed sequence is given by 

n−1

log P (x1, . . . , xn) = log P (X(1) = x1) P (X(t + 1) = xt+1|X(t) = xt) (11) 
t=1 

n−1

= log q(x1) + log Pxt,xt+1 (12) 
t=1 

= log q(x1) + n̂(i, j) log Pij (13) 
i,j 

where n̂(i, j) is the number of observed transitions from i to j in the sequence x1, . . . , xn. 
The resulting maximum likelihood setting of Pij is obtained as an empirical fraction 

n̂(i, j)
P̂ij = � 

j� n̂(i, j�) 
(14) 

Note that q(i) can only be reliably estimated from multiple observed sequences. For ex
ample, based on x1, . . . , xn, we would simply set q̂(i) = δ(i, x1) which is hardly accurate 
(sample size one). Regularization is useful here, as before. 

Hidden Markov Models 

Hidden Markov Models (HMMs) extend Markov models by assuming that the states of the 
Markov chain are not observed directly, i.e., the Markov chain itself remains hidden. We 
therefore also model how the states relate to the actual observations. This assumption of a 
simple Markov model underlying a sequence of observations is very useful in many practical 
contexts and has made HMMs very popular models of sequence data, from speech recogni
tion to bio-sequences. For example, to a first approximation, we may view words in speech 
as Markov sequences of phonemes. Phonemes are not observed directly, however, but have 
to be related to acoustic observations. Similarly, in modeling protein sequences (sequences 
of amino acid residues), we may, again approximately, describe a protein molecule as a 
Markov sequence of structural characteristics. The structural features are typically not 
observable, only the actual residues. 

We can understand HMMs by combining mixture models and Markov models. Consider 
the simple example in Figure 3 over four discrete time points t = 1, 2, 3, 4. The figure 
summarizes multiple sequences of observations y1, . . . , y4, where each observation sequence 
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corresponds to a single value yt per time point. Let’s begin by ignoring the time information 
and instead collapse the observations across the time points. The observations form two 
clusters are now well modeled by a two component mixture: 

P (y) = P (j)P (y|j) (15) 
j=1 

2

where, e.g., P (y|j) could be a Gaussian N(y; µj , σ
are effectively modeling the data at each time point with the same mixture model. If we 

2). By collapsing the observations we
j 

generate data form the resulting mixture model we would select a mixture component at 
random at each time step and generate the observation from the corresponding component 
(cluster). There’s nothing that ties the selection of mixture components in time so that 
samples from the mixture yield “phantom” clusters at successive time points (we select the 
wrong component/cluster with equal probability). By omitting the time information, we 
therefore place half of the probability mass in locations with no data. Figure 4 illustrates 
the mixture model as a graphical model. 
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Figure 3: a) Example data over four time points, b) actual data and ranges of samples 
generated from a mixture model (red ovals) estimated without time information. 

The solution is to model the selection of the mixture components as a Markov model, i.e., 
the component at t = 2 is selected on the basis of the component used at t = 1. Put another 
way, each state in the Markov model now uses one of the components in the mixture model 
to generate the corresponding observation. As a graphical model, the mixture model is a 
combination of the two as shown in Figure 5. 

Probability model 

One advantage of representing the HMM as a graphical model is that we can easily write 
down the joint probability distribution over all the variables. The graph explicates how the 
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X(1) X(2) X(3) X(4) 

Y (1) Y (2) Y (3) Y (4) 

Figure 4: A graphical model view of the mixture model over the four time points. The 
variables are indexed by time (different samples would be drawn at each time point) but 
the parameters are shared across the four time points. X(t) refers to the selection of the 
mixture component while Y (t) refers to the observations. 

variables depend on each other (who influences who) and thus highlights which conditional 
probabilities we need to write down: 

P (x1, . . . , xn, y1, . . . , yn) = P (x1)P (y1 x1)P (x2 x1)P (y2 x2) . . . (16) |
n−1

| |

= P (x1)P (y1 x1) [P (xt+1 xt)P (yt+1 xt+1)] (17) |
t=1 

| |

n−1

= q(x1)P (y1|x1) Pxt,xt+1 P (yt+1|xt+1) (18) 
t=1 

where we have used the same notation as before for the Markov chains. 

X(1) X(2) X(3) X(4) 

Y (1) Y (2) Y (3) Y (4) 

Figure 5: HMM as a graphical model. It is a Markov model where each state is associated 
with a distribution over observations. Alternatively, we can view it as a mixture model 
where the mixture components are selected in a time dependent manner. 

Three problems to solve 

We typically have to be able to solve the following three problems in order to use these 
models effectively: 
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1. Evaluate the probability of observed data or 

P (y1, . . . , yn) = P (x1, . . . , xn, y1, . . . , yn) (19) 
x1,...,xn 

2. Find the most likely hidden state sequence x1, . . . , x
∗ ∗ 

n given observations y1, . . . , yn, 
i.e.,


{x ∗, . . . , x1
∗ 

n} = arg 

3. Estimate the parameters of the model from multiple sequences of y1
(l)

, . . . , yn
(l

l 

) 
, l = 

1, . . . , L. 

Problem 1 

As in the context of Markov chains we can efficiently sum over the possible hidden state 
sequences. Here the summation means evaluating P (y1, . . . , yn). We will perform this in 
two ways depending on whether the recursion moves forward in time, computing αt(j), or 
backward in time, evaluating βt(i). The only change from before is the fact that whatever 
state we happen to visit at time t, we will also have to generate the observation yt from 
that state. This additional requirement of generating the observations can be included via 
diagonal matrices ⎡ ⎤ 

P (y|1) 0 
Dy = ⎣ ⎦ (21) · · · 

0 P (y|k) 

So, for example, 

k

q T Dy1 1 = q(i)P (y1|i) = P (y1) (22) 
i=1 

Similarly, 

k k

q T Dy1 PDy2 1 = q(i)P (y1|i) Pij P (y2|j) = P (y1, y2) (23) 
i=1 j=1 

max 
x1,...,xn 

P (x1, . . . , xn, y1, . . . , yn) (20) 

We can therefore write the forward and backward algorithms as methods that perform the 
matrix multiplications in 

q T Dy1 PDy2 P PDyn 1 = P (y1, . . . , yn) (24) · · · 
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either in the forward or backward direction. In terms of the forward pass algorithm: 

q T Dy1 = αT 
1 (25) 

αT PDyt = αT
t , or equivalently (26) � �t−1

k

αt−1(i)Pij P (yt|j) = αt(j) (27) 
i=1 

These values hold exactly αt(j) = P (y1, . . . , yt, X(t) = j) since we have generated all the 
observations up to and including yt and have summed over all the states except for the last 
one X(t). 

The backward pass algorithm is similarly defined as: 

βn = 1 (28) 

βt = PDyt+1 βt+1, or equivalently (29) 
k

βt(i) = Pij P (yt+1|j)βt+1(j) (30) 
j=1 

In this case βt(i) = P (yt+1, . . . , yn|X(t) = i) since we have summed over all the possible 
values of the state variables X(t + 1), . . . , X(n), starting from a fixed X(t) = i, and the 
first observation we have generated in the recursion is yt+1. 

By combining the two recursions we can finally evaluate 

k

P (y1, . . . , yn) = αt
T βt = αt(i)βt(i) (31) 

i=1 

which holds for any t = 1, . . . , n. You can understand this result in two ways: either in 
terms of performing the remaining matrix multiplication corresponding to the two parts 

αT
t βt� �� � � �� � 

P (y1, . . . , yn) = (q T Dy1 P PDyt ) (PDyt+1 PDyn 1) (32) · · · · · · 

or as an illustration of the Markov property: 

αt(i) βt(i)k�� �� � � �� � 
P (y1, . . . , yn) = P (y1, . . . , yt, X(t) = i) P (yt+1, . . . , yn|X(t) = i) (33) 

i=1 
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Also, since βn(i) = 1 for all i, clearly 

P (y1, . . . , yn) = 
k� 

i=1 

αn(i) = 
k� 

i=1 

P (y1, . . . , yt, X(t) = i) (34) 
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