Representations for KBS: Uncertainty & Decision Support

6.871 -- Lecture 10

1

6.871 - Lecture 10

Outline

- A Problem with Mycin
- Brief review of history of uncertainty in AI
- Bayes Theorem
- Some tractable Bayesian situations
- Bayes Nets
- Decision Theory and Rational Choice
- A recurring theme: battling combinatorics through model assumptions

6.871 - Lecture 10

A Problem with Mycin

- Its notion of uncertainty seems broken
 - In Mycin the certainty factor for OR is Max
 - CF (OR A B) = (Max (Cf A) (Cf B))
- Consider
 - Rule-1 IF A then C, certainty factor 1
 - Rule-2 If B then C, certainty factor 1
 - This is logically the same as
 If (Or A B) then C, certainty factor 1

More Problems

- If CF(A) = .8 and CF(B) = .3
 A→C
 B→C
 A or B→C
- IF A → B, A → C, B → D, C → D there will also be a mistake: (why?)

6.871 - Lecture 10

Then CF (C) = .8 + .3 * (1 - .8) = .8 + .06 = .86CF (OR A B) = (Max .8 .3) = .8 and CF(C) = .8

Some Representations of Uncertainty

- Standard probability
 - too many numbers
- Focus on logical, qualitative
 - reasoning by cases
 - non-monotonic reasoning
- Numerical approaches retried
 - Certainty factors
 - Dempster-Schafer
 - Fuzzy
- Bayes Networks

Background

Conditional Probability of S given D

$$P(S \mid D) = \frac{P(S \& D)}{P(D)}$$

 $P(S \& D) = P(S \mid D) * P(D)$

Reviewing Bayes Theorem Symptom S

Diseases(health states) D_i such that $\sum_i P(D_i) = 1$

Understanding Bayes Theorem

Number that test positive If you test positive your probability of having cancer is?

Independence, Conditional Independence

- Independence:
 - $\mathsf{P}(\mathsf{A}\&\mathsf{B}) = \mathsf{P}(\mathsf{A}) \bullet \mathsf{P}(\mathsf{B})$
 - A varies the same within B as it does in the universe
- Conditional independence within C
 P(A&B|C) = P(A|C) P(B|C)
 - When we restrict attention to C, A and B are independent

dependent, given C

6.871 - Lecture 10

independent, given C.

Naïve Bayes Model

- Single disease, multiple symptoms
- N symptoms means how many probabilities?
- Assume symptoms conditionally independent
 now P(S1,S2|D) = P(S1|D) * P(S2|D)
- Now?

Sequential Bayesian Inference

- Consider symptoms one by one
 - Prior probabilities P(Di)
 - Observe symptom Sj
 - Updates priors using Bayes Rule:

$$P(D_i) = \frac{P(S_j \mid D_i) \times P(D_i)}{P(S_i)}$$

- Repeat for other symptoms using the resulting posterior as the new prior
- If symptoms are conditionally independent, same as doing it all at once
- Allows choice of what symptom to observe (test to perform) next in terms of cost/benefit.

Bipartite Graphs

- Multiple symptoms, multiple diseases
- Diseases are probabilistically independent
- Symptoms are conditionally independent
- Symptom probabilities depend only the diseases causing them
- Symptoms with multiple causes require joint probabilities P(S2|D1,D2,D3)

Noisy OR

Another element in the modeling vocabulary

Assumption: only 1 disease is present at a time

- Probability that all diseases cause the symptom is just the probability that at least 1 does
- Therefore: Symptom is absent only if no disease caused it.

1 - P(S2|D1,D2,D3) = (1 - P(S2|D1))* (1 - P(S2|D2))* (1 - P(S2|D3))

 Reduces probability table size: if n diseases and k symptoms, from k2ⁿ to nk

Polytrees

• What if diseases *do* cause or influence each other?

- Are there still well behaved versions?
- Polytrees: At most one path between any two nodes
 Don't have to worry about "double-counting"
- Efficient sequential updating is still possible

6.871 - Lecture 10

- Directed Acyclic Graphs
- Absence of link \rightarrow conditional independence
- P(X1,...,Xn) = Product P(Xi|{parents (Xi)})
- Specify joint probability tables over parents for each node

Probability A,B,C,D,E all true: P(A,B,C,D,E) = P(A) * P(B|A) * P(C|A) * P(D|B,C) * P(E|C)Probability A,C,D true; B,E false: P(A,B',C,D,E') = P(A) * P(B'|A) * P(C|A) * P(D|B',C) * P(E'|C)

Computing with Partial Information

• Probability that A true and E false:

$$P(A,\overline{E}) = \sum_{B,C,D} P(A,B,C,D,\overline{E})$$

= $\sum_{B,C,D} P(A)P(B \mid A)P(C \mid A)P(D \mid B,C)P(\overline{E} \mid C)$
= $P(A)\sum_{C} P(C \mid A)P(\overline{E} \mid C)\sum_{B} P(B \mid A)\sum_{D} P(D \mid B,C)$

- Graph separators (e.g. C) correspond to factorizations
- General problem of finding separators is NP-hard

Normally have to do 2^3 computations of the entire formula. By factoring can do 2^3 computations of last term, 2 of second 2, 2 of first Sum over c doesn't change when D changes, etc.

Odds Likelihood Formulation

- Define odds as $O(D) = \frac{P(D)}{P(\overline{D})} = \frac{P(D)}{1 P(D)}$ Define *likelihood* as: P(S + D)IS: $L(S \mid D) = \frac{P(S \mid D)}{P(S \mid \overline{D})}$

Derive complementary instances of Bayes Rule: $P(D \mid S) = \frac{P(D)P(S \mid D)}{P(S)} \qquad P(\overline{D} \mid S) = \frac{P(\overline{D})P(S \mid \overline{D})}{P(S)}$ $\frac{P(D \mid S)}{P(\overline{D} \mid S)} = \frac{P(D)P(S \mid D)}{P(\overline{D})P(S \mid \overline{D})}$ Bayes Rule is Then: O(D | S) = O(D)L(S | D)

In Logarithmic Form: Log Odds = Log Odds + Log Likelihood 6.871 - Lecture 10

Decision Making

- So far: how to use evidence to evaluate a situation.
 In many cases, this is only the beginning
- Want to take actions to improve the situation
- Which action?
 - The one most likely to leave us in the best condition
- Decision analysis helps us calculate which action that is

A Decision Making Problem

Two types of Urns: U1 and U2 (80% are U1) U1 contains 4 red balls and 6 black balls U2 contains nine red balls and one black ball Urn selected at random; you are to guess type. Courses of action:

Refuse to play Guess it is of type 1 Guess it is of type 2 Sample a ball No payoff, no cost \$40 if right, -\$20 if wrong \$100 if right, -\$5 if wrong \$8 for the right to sample

Decision Flow Diagrams

22

Expected Monetary Value

- Suppose there are several possible outcomes
 - Each has a monetary payoff or penalty
 - Each has a probability
- The Expected Monetary Value is the sum of the products of the monetary payoffs times their corresponding probabilities.

 $EMV = .8 \cdot \$40 + .2 \cdot -\$20 = \$32 + (-\$4) = \$28$

- EMV is a normative notion of what a person who has no other biases (risk aversion, e.g.) should be willing to accept in exchange for the situation. You should be indifferent to the choice of \$28 or playing the game.
- Most people have some extra biases; incorporate them in the form of a utility function applied to the calculated value.
- A rational person should choose the course of action with highest EMV.

Averaging Out and Folding Back

- EMV of chance node is probability weighted sum over all branches
- EMV of decision node is max over all branches

6.871 - Lecture 10

State

U1

U2

EMV

The Effect of Observation

Bayes theorem used to calculate probabilities at chance nodes following decision nodes that provide relevant evidence.

 $P(U1|R) = P(R|U1) \bullet P(U1) / P(R)$

Action

			nenon		
	State	A1	A2	A3	Probability
	U1	40	-5	0	.8
	U2	-20	100	0	.2
6.871 - Lecture 10	EMV	28	16	0	1
	P(r u1) = .4 H	P(U1) = .8 P(R u2) = .9	$P(u2)=.2 \rightarrow P(u2)=.2$	r)=.5	
	P(U1 r) = .4	* .8 / .5 = .64			

Calculating the Updated Probabilities

Initial Probabilitie	S	
P(Outcome State)	<u>State</u>	
<u>Outcome</u>	U1	U2
Red	.4	.9
Black	.6	.1
	.8	.2

Joint (chain rule)							
P(Outcome & St	tate) <u>Stat</u>	<u>e</u> M	arginal Probability				
<u>Outcome</u>	U1	U2	of Outcome				
Red	.4 • .8 = .32	.9 • .2 = .18	.50				
Black	.6 • .8 = .48	.1 • .2 = .02	.50				

Updated Probabilities

P(State Outcome)	<u>State</u>	
<u>Outcome</u>	U1	U2
Red	.64	.36
Black	.96	.04

6.871 - Lecture 10

Illustrating Evaluation

Final Value of Decision Flow Diagram

Maximum Entropy) (.2) (.5) (.2) Several Competing Hy

Several Competing Hypotheses Each with a Probability rating.

- Suppose there are several tests you can make.
 - Each test can change the probability of some (or all) of the hypotheses (using Bayes Theorem).
 - Each outcome of the test has a probability.
 - We're only interested in gathering information at this point
 - Which test should you make?
- Entropy = Sum $-2 \cdot P(i) \cdot Log P(i)$, a standard measure
- Intuition
 - For .1, .2, .5, .2 = 1.06

.1

- For .99, .003, .003, .004 = .058

Maximum Entropy

- For each outcome of a test calculate the change in entropy.
 - Weigh this by the probability of that outcome.
 - Sum these to get an expected change of entropy for the test.
- Chose that test which has the greatest expected change in entropy.
 - Choosing test most likely to provide the most information.
- Tests have different costs (sometimes quite drastic ones like life and death).
- Normalize the benefits by the costs and then make choice.

Summary

- Several approaches to uncertainty in AI
- Bayes theorem, nets a current favorite
- Some tractable Bayesian situations
- A recurring theme: battling combinatorics through model assumptions
- Decision theory and rational choice