Representations for KBS: Uncertainty \& Decision Support

6.871 -- Lecture 10

Outline

- A Problem with Mycin
- Brief review of history of uncertainty in AI
- Bayes Theorem
- Some tractable Bayesian situations
- Bayes Nets
- Decision Theory and Rational Choice
- A recurring theme: battling combinatorics through model assumptions

A Problem with Mycin

- Its notion of uncertainty seems broken
- In Mycin the certainty factor for OR is Max
- CF (OR A B) $=(\operatorname{Max}(\mathrm{Cf} A)(\mathrm{Cf} B))$
- Consider
- Rule-1 IF A then C, certainty factor 1
- Rule-2 If B then C, certainty factor 1
- This is logically the same as If (Or A B) then C, certainty factor 1

More Problems

- If $C F(A)=.8$ and $C F(B)=.3$
$A \rightarrow C$
$B \rightarrow C$
A or $B \rightarrow C$
- IF $A \rightarrow B, A \rightarrow C, B \rightarrow D, C \rightarrow D$ there will also be a mistake: (why?)

Some Representations of Uncertainty

- Standard probability
- too many numbers
- Focus on logical, qualitative
- reasoning by cases
- non-monotonic reasoning
- Numerical approaches retried
- Certainty factors
- Dempster-Schafer
- Fuzzy
- Bayes Networks

Background

Conditional Probability of S given D

$$
P(S \mid D)=\frac{P(S \& D)}{P(D)}
$$

$$
P(S \& D)=P(S \mid D) * P(D)
$$

Reviewing Bayes Theorem

 Symptom SDiseases(health states) D_{i} such that $\sum_{i} P\left(D_{i}\right)=1$

Understanding Bayes Theorem

Number that test positive If you test positive your probability of having cancer is?

Independence, Conditional Independence

- Independence:
$P(A \& B)=P(A) \cdot P(B)$
- A varies the same within B as it does in the universe
- Conditional independence within C $P(A \& B \mid C)=P(A \mid C) \cdot P(B \mid C)$
- When we restrict attention to C, A and B are independent

Examples

A and B are independent A and B are conditionally dependent, given C

A^{\prime} and B are dependent
A^{\prime} and B are conditionally independent, given C .

Naïve Bayes Model

- Single disease, multiple symptoms
- N symptoms means how many probabilities?
- Assume symptoms conditionally independent

$$
- \text { now } P(S 1, S 2 \mid D)=P(S 1 \mid D) * P(S 2 \mid D)
$$

- Now?

Sequential Bayesian Inference

- Consider symptoms one by one
- Prior probabilities P(Di)
- Observe symptom Sj
- Updates priors using Bayes Rule:

$$
P\left(D_{i}\right)=\frac{P\left(S_{j} \mid D_{i}\right) \times P\left(D_{i}\right)}{P\left(S_{j}\right)}
$$

- Repeat for other symptoms using the resulting posterior as the new prior
- If symptoms are conditionally independent, same as doing it all at once
- Allows choice of what symptom to observe (test to perform) next in terms of cost/benefit.

Bipartite Graphs

- Multiple symptoms, multiple diseases
- Diseases are probabilistically independent
- Symptoms are conditionally independent
- Symptom probabilities depend only the diseases causing them
- Symptoms with multiple causes require joint probabilities P(S2|D1,D2,D3)

Noisy OR

Another element in the modeling vocabulary
Assumption: only 1 disease is present at a time

- Probability that all diseases cause the symptom is just the probability that at least 1 does
- Therefore: Symptom is absent only if no disease caused it.

$$
\begin{aligned}
1-\mathrm{P}(\mathrm{~S} 2 \mid \mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3) & =(1-\mathrm{P}(\mathrm{~S} 2 \mid \mathrm{D} 1)) \\
& *(1-\mathrm{P}(\mathrm{~S} 2 \mid \mathrm{D} 2)) \\
& *(1-\mathrm{P}(\mathrm{~S} \mid \mathrm{D} 3))
\end{aligned}
$$

- Reduces probability table size: if n diseases and k symptoms, from k2^n to nk

Polytrees

- What if diseases do cause or influence each other?

- Are there still well behaved versions?
- Polytrees: At most one path between any two nodes
- Don't have to worry about "double-counting"
- Efficient sequential updating is still possible

Bayes Nets

- Directed Acyclic Graphs
- Absence of link \rightarrow conditional independence
- P(X1,...,Xn) = Product P(Xil\{parents (Xi)\})
- Specify joint probability tables over parents for each node

Probability A,B,C,D,E all true:
$P(A, B, C, D, E)=P(A)$ * $P(B \mid A)$ * $P(C \mid A)$ * $P(D \mid B, C)$ * $P(E \mid C)$
Probability A,C,D true; B,E false:
$P\left(A, B^{\prime}, C, D, E^{\prime}\right)=P(A) * P\left(B^{\prime} \mid A\right)$ * $P(C \mid A)$ * $P\left(D \mid B B^{\prime}, C\right) * P\left(E^{\prime} \mid C\right)$

Example

P (Call\|Alarm)	t	f	P (RadioReport\|Earthquake)	t	f
t	.9	.01		t	1
f	.1	.99		0	
			0	1	

P (Alarm $\mid \mathrm{B}, \mathrm{E})$	t, t	t, f	f, t	f, f
t	.8	.99	.6	.01
f	.2	.01	.4	.99

16 vs. 32 probabilites

Computing with Partial Information

- Probability that A true and E false:

$$
\begin{aligned}
P(A, \bar{E}) & =\sum_{B, C, D} P(A, B, C, D, \bar{E}) \\
& =\sum_{B, C, D} P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(\bar{E} \mid C) \\
& =P(A) \sum_{C} P(C \mid A) P(\bar{E} \mid C) \sum_{B} P(B \mid A) \sum_{D} P(D \mid B, C)
\end{aligned}
$$

- Graph separators (e.g. C) correspond to factorizations
- General problem of finding separators is NP-hard

Odds Likelihood Formulation

- Define odds as $\quad O(D)=\frac{P(D)}{P(\bar{D})}=\frac{P(D)}{1-P(D)}$
- Define likelihood as:

$$
\stackrel{\text { S: }}{L(S \mid D)}=\frac{P(S \mid D)}{P(S \mid \bar{D})}
$$

Derive complementary instances of Bayes Rule:

$$
\begin{gathered}
P(D \mid S)=\frac{P(D) P(S \mid D)}{P(S)} \quad P(\bar{D} \mid S)=\frac{P(\bar{D}) P(S \mid \bar{D})}{P(S)} \\
\frac{P(D \mid S)}{P(\bar{D} \mid S)}=\frac{P(D) P(S \mid D)}{P(\bar{D}) P(S \mid \bar{D})}
\end{gathered}
$$

Bayes Rule is Then: $O(D \mid S)=O(D) L(S \mid D)$
In Logarithmic Form: Log Odds = Log Odds + Log Likelihood

Decision Making

- So far: how to use evidence to evaluate a situation.
- In many cases, this is only the beginning
- Want to take actions to improve the situation
- Which action?
- The one most likely to leave us in the best condition
- Decision analysis helps us calculate which action that is

A Decision Making Problem

Two types of Urns: U1 and U2 (80\% are U1)
U1 contains 4 red balls and 6 black balls
U2 contains nine red balls and one black ball
Urn selected at random; you are to guess type.
Courses of action:

Refuse to play
Guess it is of type 1
Guess it is of type 2
Sample a ball

No payoff, no cost
$\$ 40$ if right, -\$20 if wrong
$\$ 100$ if right, -\$5 if wrong
$\$ 8$ for the right to sample

Decision Flow Diagrams

Expected Monetary Value

- Suppose there are several possible outcomes
- Each has a monetary payoff or penalty
- Each has a probability
- The Expected Monetary Value is the sum of the products of the monetary payoffs times their corresponding probabilities.

- EMV is a normative notion of what a person who has no other biases (risk aversion, e.g.) should be willing to accept in exchange for the situation. You should be indifferent to the choice of $\$ 28$ or playing the game.
- Most people have some extra biases; incorporate them in the form of a utility function applied to the calculated value.
- A rational person should choose the course of action with highest EMV.

Averaging Out and Folding Back

- EMV of chance node is probability weighted sum over all branches
- EMV of decision node is max over all branches

The Effect of Observation

Bayes theorem used to calculate probabilities at chance nodes following decision nodes that provide relevant evidence.

	Action			
State	A1	A2	A3	Probability
U1	40	-5	0	.8
U2	-20	100	0	.2

Calculating the Updated Probabilities

Initial Probabilities		
P(Outcome\|State)	State	
Outcome	U1	U2
Red	.4	.9
Black	.6	.1
		8
		.2

Joint (chain rule)			
P (Outcome \& State)			Marginal Probability
Outcome	U1	U2	of Outcome
Red	. $4 \cdot .8=.32$. $9 \cdot .2=.18$. 50
Black	. $6 \cdot .8=.48$. $1 \cdot .2=.02$. 50

Updated Probabilities

P(State \|Outcome)	State	
Outcome	U1	U2
Red	.64	.36
Black	.96	.04

Illustrating Evaluation

Final Value of Decision Flow Diagram

Maximum Entropy

 .2)
 Several Competing Hypotheses Each with a Probability rating.

- Suppose there are several tests you can make.
- Each test can change the probability of some (or all) of the hypotheses (using Bayes Theorem).
- Each outcome of the test has a probability.
- We're only interested in gathering information at this point
- Which test should you make?
- Entropy = Sum -2 • P(i) • Log P(i), a standard measure
- Intuition
- For .1, .2, .5, . $2=1.06$
- For .99, .003, .003, . $004=.058$

Maximum Entropy

- For each outcome of a test calculate the change in entropy.
- Weigh this by the probability of that outcome.
- Sum these to get an expected change of entropy for the test.
- Chose that test which has the greatest expected change in entropy.
- Choosing test most likely to provide the most information.
- Tests have different costs (sometimes quite drastic ones like life and death).
- Normalize the benefits by the costs and then make choice.

Summary

- Several approaches to uncertainty in AI
- Bayes theorem, nets a current favorite
- Some tractable Bayesian situations
- A recurring theme: battling combinatorics through model assumptions
- Decision theory and rational choice

